DeepCOVIDExplainer: Explainable COVID-19 Diagnosis Based on Chest X-ray
Images
- URL: http://arxiv.org/abs/2004.04582v3
- Date: Sat, 6 Jun 2020 20:31:13 GMT
- Title: DeepCOVIDExplainer: Explainable COVID-19 Diagnosis Based on Chest X-ray
Images
- Authors: Md. Rezaul Karim, Till D\"ohmen, Dietrich Rebholz-Schuhmann, Stefan
Decker, Michael Cochez, and Oya Beyan
- Abstract summary: We propose an explainable deep neural networks(DNN)-based method for automatic detection of COVID-19 symptoms from CXR images.
We used 15,959 CXR images of 15,854 patients, covering normal, pneumonia, and COVID-19 cases.
Our approach can identify COVID-19 confidently with a positive predictive value(PPV) of 91.6%, 92.45%, and 96.12%.
- Score: 1.6855835471222005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Amid the coronavirus disease(COVID-19) pandemic, humanity experiences a rapid
increase in infection numbers across the world. Challenge hospitals are faced
with, in the fight against the virus, is the effective screening of incoming
patients. One methodology is the assessment of chest radiography(CXR) images,
which usually requires expert radiologist's knowledge. In this paper, we
propose an explainable deep neural networks(DNN)-based method for automatic
detection of COVID-19 symptoms from CXR images, which we call
DeepCOVIDExplainer. We used 15,959 CXR images of 15,854 patients, covering
normal, pneumonia, and COVID-19 cases. CXR images are first comprehensively
preprocessed, before being augmented and classified with a neural ensemble
method, followed by highlighting class-discriminating regions using
gradient-guided class activation maps(Grad-CAM++) and layer-wise relevance
propagation(LRP). Further, we provide human-interpretable explanations of the
predictions. Evaluation results based on hold-out data show that our approach
can identify COVID-19 confidently with a positive predictive value(PPV) of
91.6%, 92.45%, and 96.12%; precision, recall, and F1 score of 94.6%, 94.3%, and
94.6%, respectively for normal, pneumonia, and COVID-19 cases, respectively,
making it comparable or improved results over recent approaches. We hope that
our findings will be a useful contribution to the fight against COVID-19 and,
in more general, towards an increasing acceptance and adoption of AI-assisted
applications in the clinical practice.
Related papers
- The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - COVID-19 Infection Map Generation and Detection from Chest X-Ray Images [19.578921765959333]
This study proposes a novel method for the joint localization, severity grading, and detection of COVID-19 from CXR images.
We have compiled the largest dataset with 119,316 CXR images including 2951 COVID-19 samples.
A detailed set of experiments show that state-of-the-art segmentation networks can learn to localize COVID-19 infection with an F1-score of 83.20%.
arXiv Detail & Related papers (2020-09-26T22:20:05Z) - CCBlock: An Effective Use of Deep Learning for Automatic Diagnosis of
COVID-19 Using X-Ray Images [0.0]
The COVID-19 pandemic has dramatically affected the health and well-being of the world's population.
It is necessary to develop assistive methods for detecting and diagnosing the COVID-19 to eradicate the spread of the novel coronavirus among people.
Based on convolutional neural networks (CNNs), automated detection systems have shown promising results of diagnosing patients with the COVID-19 through radiography.
arXiv Detail & Related papers (2020-09-21T19:20:01Z) - PDCOVIDNet: A Parallel-Dilated Convolutional Neural Network Architecture
for Detecting COVID-19 from Chest X-Ray Images [1.4824891788575418]
COVID-19 pandemic continues to severely undermine the prosperity of the global health system.
The use of chest X-ray images for radiological assessment is one of the essential screening techniques.
We propose a parallel-dilated convolutional neural network based COVID-19 detection system from chest x-ray images.
arXiv Detail & Related papers (2020-07-29T12:28:16Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Deep-COVID: Predicting COVID-19 From Chest X-Ray Images Using Deep
Transfer Learning [5.174558376705871]
The COVID-19 pandemic is causing a major outbreak in more than 150 countries around the world.
One of the crucial step in fighting COVID-19 is the ability to detect the infected patients early enough.
We study the application of deep learning models to detect COVID-19 patients from their chest radiography images.
arXiv Detail & Related papers (2020-04-20T15:09:14Z) - Can AI help in screening Viral and COVID-19 pneumonia? [0.0]
The aim of this paper is to propose a robust technique for automatic detection of COVID-19 pneumonia from digital chest X-ray images.
The database contains a mixture of 423 COVID-19, 1485 viral pneumonia, and 1579 normal chest X-ray images.
The classification accuracy, precision, sensitivity, and specificity for both the schemes were 99.7%, 99.7%, 99.7% and 99.55% and 97.9%, 97.95%, 97.9%, and 98.8%, respectively.
arXiv Detail & Related papers (2020-03-29T21:37:21Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.