論文の概要: Learning to Visually Navigate in Photorealistic Environments Without any
Supervision
- arxiv url: http://arxiv.org/abs/2004.04954v1
- Date: Fri, 10 Apr 2020 08:59:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 20:45:59.965016
- Title: Learning to Visually Navigate in Photorealistic Environments Without any
Supervision
- Title(参考訳): スーパービジョンのないフォトリアリスティック環境における視覚的ナビゲーションの学習
- Authors: Lina Mezghani, Sainbayar Sukhbaatar, Arthur Szlam, Armand Joulin,
Piotr Bojanowski
- Abstract要約: 外部の監督や報酬を伴わずに画像入力から学習するための新しいアプローチを導入する。
我々のアプローチは3つの段階から構成される: 一人称視点の優れた表現を学習し、次に記憶を用いて探索することを学ぶ。
エージェントを訓練して、RGB入力のみでギブソンデータセットから挑戦的な写真リアリスティック環境をナビゲートすることで、このアプローチの利点を示す。
- 参考スコア(独自算出の注目度): 37.22924101745505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning to navigate in a realistic setting where an agent must rely solely
on visual inputs is a challenging task, in part because the lack of position
information makes it difficult to provide supervision during training. In this
paper, we introduce a novel approach for learning to navigate from image inputs
without external supervision or reward. Our approach consists of three stages:
learning a good representation of first-person views, then learning to explore
using memory, and finally learning to navigate by setting its own goals. The
model is trained with intrinsic rewards only so that it can be applied to any
environment with image observations. We show the benefits of our approach by
training an agent to navigate challenging photo-realistic environments from the
Gibson dataset with RGB inputs only.
- Abstract(参考訳): エージェントが視覚的な入力にのみ依存しなければならない現実的な環境でのナビゲートの学習は難しい課題である。
本稿では,外部の監督や報酬を伴わずに画像入力から学習するための新しいアプローチを提案する。
我々のアプローチは3つの段階から構成される: 一人称視点の優れた表現を学習し、次に記憶を用いて探索することを学ぶ。
モデルは、画像観察を行う任意の環境に適用できるように、内在的な報酬のみで訓練される。
エージェントを訓練して、RGB入力のみでギブソンデータセットから挑戦的な写真リアリスティック環境をナビゲートすることで、このアプローチの利点を示す。
関連論文リスト
- Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
エージェントの自我中心のビューとセマンティックマップを対比してナビゲーション固有の視覚表現学習法を提案する。
Ego$2$-Map学習は、オブジェクト、構造、遷移などのコンパクトでリッチな情報を、ナビゲーションのためのエージェントのエゴセントリックな表現に転送する。
論文 参考訳(メタデータ) (2023-07-23T14:01:05Z) - Using Navigational Information to Learn Visual Representations [7.747924294389427]
コントラスト学習の事前学習段階における空間的・時間的情報を用いることで、下流分類の性能を向上させることができることを示す。
この研究は、表現学習を改善するための文脈情報の有効性と効率を明らかにする。
論文 参考訳(メタデータ) (2022-02-10T20:17:55Z) - Curious Representation Learning for Embodied Intelligence [81.21764276106924]
近年,自己指導型表現学習は顕著な成功を収めている。
しかし、真にインテリジェントなエージェントを構築するためには、環境から学習できる表現学習アルゴリズムを構築する必要がある。
本稿では,強化学習方針と視覚的表現モデルを同時に学習する,好奇心をそそる表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-03T17:59:20Z) - Environment Predictive Coding for Embodied Agents [92.31905063609082]
本稿では,環境レベルの表現を具体化エージェントに学習する自己教師型手法である環境予測符号化を導入する。
GibsonとMatterport3Dのフォトリアリスティックな3D環境に関する実験により、我々の手法は、限られた経験の予算しか持たない課題において、最先端の課題よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-02-03T23:43:16Z) - Memory-Augmented Reinforcement Learning for Image-Goal Navigation [67.3963444878746]
本論文では,クロスエピソードメモリを活用したナビゲーション学習法を提案する。
オーバーフィッティングを避けるため、トレーニング中にRGB入力にデータ拡張を適用することを提案する。
この競合性能はRGB入力のみから得られるが,位置や深度などのセンサは利用できない。
論文 参考訳(メタデータ) (2021-01-13T16:30:20Z) - Embodied Visual Active Learning for Semantic Segmentation [33.02424587900808]
本研究では,エージェントが3次元環境を探索し,視覚シーン理解の獲得を目指す,具体化されたビジュアルアクティブラーニングの課題について検討する。
我々は、学習と事前指定の両方のエージェントのバッテリーを開発し、環境に関する異なるレベルの知識で開発する。
本研究では,matterport3dシミュレータを用いて提案手法を広範囲に評価し,本手法が比較対象よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-17T11:02:34Z) - VisualEchoes: Spatial Image Representation Learning through Echolocation [97.23789910400387]
いくつかの動物種(コウモリ、イルカ、クジラなど)や視覚障害者さえもエコーロケーションを行う能力を持っている。
エコーロケーションを用いて有用な視覚特徴を学習する対話型表現学習フレームワークを提案する。
我々の研究は、物理的世界との相互作用によって監督される、エンボディエージェントのための表現学習の新しい道を開く。
論文 参考訳(メタデータ) (2020-05-04T16:16:58Z) - Acceleration of Actor-Critic Deep Reinforcement Learning for Visual
Grasping in Clutter by State Representation Learning Based on Disentanglement
of a Raw Input Image [4.970364068620608]
アクター・クリティック・ディープ・強化学習(RL)法は、多種多様な物体をつかむ際には、通常非常に低性能である。
状態表現学習 (SRL) を用いて, RL において重要な情報をまずエンコードする。
その結果,原画像の歪みに基づく前処理が,コンパクトな表現を効果的に捉える鍵であることが判明した。
論文 参考訳(メタデータ) (2020-02-27T03:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。