論文の概要: Minimum Latency Training Strategies for Streaming Sequence-to-Sequence
ASR
- arxiv url: http://arxiv.org/abs/2004.05009v2
- Date: Fri, 15 May 2020 00:21:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 20:53:26.576809
- Title: Minimum Latency Training Strategies for Streaming Sequence-to-Sequence
ASR
- Title(参考訳): ストリーミングシーケンス対シーケンスASRのための最小レイテンシトレーニング戦略
- Authors: Hirofumi Inaguma, Yashesh Gaur, Liang Lu, Jinyu Li, Yifan Gong
- Abstract要約: 線形時間復号複雑性を伴うオンライン音声認識を実現するために,ストリームアテンションに基づくシーケンス・ツー・シーケンス(S2S)モデルが提案されている。
これらのモデルでは、一方向エンコーダには将来的な情報がないため、実際の音響境界よりもトークンを生成する決定が遅れる。
本稿では,ハイブリッドモデルから抽出した外部ハードアライメントを活用することで,トレーニング中のいくつかの戦略を提案する。
Cortana音声検索タスクの実験により,提案手法は遅延を著しく低減し,デコーダ側の特定の場合の認識精度も向上することを示した。
- 参考スコア(独自算出の注目度): 44.229256049718316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, a few novel streaming attention-based sequence-to-sequence (S2S)
models have been proposed to perform online speech recognition with linear-time
decoding complexity. However, in these models, the decisions to generate tokens
are delayed compared to the actual acoustic boundaries since their
unidirectional encoders lack future information. This leads to an inevitable
latency during inference. To alleviate this issue and reduce latency, we
propose several strategies during training by leveraging external hard
alignments extracted from the hybrid model. We investigate to utilize the
alignments in both the encoder and the decoder. On the encoder side, (1)
multi-task learning and (2) pre-training with the framewise classification task
are studied. On the decoder side, we (3) remove inappropriate alignment paths
beyond an acceptable latency during the alignment marginalization, and (4)
directly minimize the differentiable expected latency loss. Experiments on the
Cortana voice search task demonstrate that our proposed methods can
significantly reduce the latency, and even improve the recognition accuracy in
certain cases on the decoder side. We also present some analysis to understand
the behaviors of streaming S2S models.
- Abstract(参考訳): 近年,線形時間復号の複雑さを伴うオンライン音声認識を実現するために,s2s(streaming attention-based sequence-to-sequence)モデルが提案されている。
しかし、これらのモデルでは、一方向エンコーダには将来的な情報がないため、実際の音響境界よりもトークンを生成する決定が遅れる。
これにより、推論中に避けられないレイテンシが発生する。
この問題を緩和し、レイテンシを削減するため、ハイブリッドモデルから抽出した外部のハードアライメントを活用し、トレーニング中のいくつかの戦略を提案する。
エンコーダとデコーダの両方のアライメントを利用する。
エンコーダ側では,(1)マルチタスク学習と(2)フレームワイド分類タスクによる事前学習について検討した。
デコーダ側では、(3)アライメントの限界化時に許容される遅延を超える不適切なアライメントパスを除去し、(4)予測される遅延損失を直接最小化する。
Cortana音声検索タスクの実験により,提案手法は遅延を著しく低減し,デコーダ側の特定の場合の認識精度も向上することを示した。
また,ストリーミングS2Sモデルの動作を理解するための分析を行った。
関連論文リスト
- DEER: A Delay-Resilient Framework for Reinforcement Learning with Variable Delays [26.032139258562708]
本稿では,解釈性を効果的に向上し,ランダム遅延問題に対処するためのフレームワークである$textbfDEER (Delay-Resilient-Enhanced RL)$を提案する。
様々な遅延シナリオでは、トレーニングされたエンコーダは、追加の修正を必要とせずに、標準のRLアルゴリズムとシームレスに統合することができる。
その結果, DEER は定常およびランダムな遅延設定において最先端の RL アルゴリズムよりも優れていることを確認した。
論文 参考訳(メタデータ) (2024-06-05T09:45:26Z) - Faster Diffusion: Rethinking the Role of the Encoder for Diffusion Model Inference [95.42299246592756]
本稿では,UNetエンコーダについて検討し,エンコーダの特徴を実証的に分析する。
エンコーダの特徴は最小限に変化するが,デコーダの特徴は時間段階によって大きく異なる。
我々は、テキスト・ツー・ビデオ、パーソナライズド・ジェネレーション、参照誘導ジェネレーションといった他のタスクに対するアプローチを検証する。
論文 参考訳(メタデータ) (2023-12-15T08:46:43Z) - Short-Term Memory Convolutions [0.0]
本稿では,STMC(Short-Term Memory Convolution)と呼ばれる,推論時間レイテンシとメモリ消費の最小化手法を提案する。
STMCベースのモデルのトレーニングは、畳み込みニューラルネットワーク(CNN)のみに基づくため、より速く、より安定している。
音声分離では, 出力品質に影響を与えることなく, 5倍の推論時間短縮と2倍の遅延低減を実現した。
論文 参考訳(メタデータ) (2023-02-08T20:52:24Z) - Minimum Latency Training of Sequence Transducers for Streaming
End-to-End Speech Recognition [38.28868751443619]
本稿では,シーケンストランスデューサモデルの遅延を明示的にモデル化し,遅延を低減するための新しいトレーニング手法を提案する。
実験結果から,提案した最小レイテンシトレーニングにより,WER劣化率0.7%において,因果コンバータ-Tのレイテンシを220msから27msに短縮できることがわかった。
論文 参考訳(メタデータ) (2022-11-04T09:19:59Z) - Streaming Align-Refine for Non-autoregressive Deliberation [42.748839817396046]
本稿では,ストリーミングRNN-Tモデルの仮説アライメントを意図した非自己回帰的(非AR)デコーディングアルゴリズムを提案する。
提案アルゴリズムは,単純なグリーディ復号処理を容易にし,同時に各フレームにおける復号結果を,限られた適切なコンテキストで生成することができる。
音声検索データセットとLibrispeechの実験は、合理的な適切なコンテキストで、ストリーミングモデルがオフラインと同等に動作していることを示しています。
論文 参考訳(メタデータ) (2022-04-15T17:24:39Z) - Streaming parallel transducer beam search with fast-slow cascaded
encoders [23.416682253435837]
RNNトランスデューサのストリーミングおよび非ストリーミングASRは、因果エンコーダと非因果エンコーダをカスケードすることで統一することができる。
高速スローエンコーダから復号するトランスデューサのための並列時間同期ビーム探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-29T17:29:39Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
非線形ビームフォーミングフィルタは、大規模な接続を伴う定常シナリオにおいて、線形アプローチを著しく上回る。
主な課題の1つは、これらのアルゴリズムのリアルタイム実装である。
本稿では,大規模並列化によるAPSMに基づくアルゴリズムの高速化について検討する。
論文 参考訳(メタデータ) (2022-01-13T15:20:45Z) - Low-Fidelity End-to-End Video Encoder Pre-training for Temporal Action
Localization [96.73647162960842]
TALはビデオ理解の基本的な課題だが、難しい課題だ。
既存のtalメソッドは、アクション分類の監督を通じてビデオエンコーダを事前トレーニングする。
本稿では,ローファイダリティ・エンド・ツー・エンド(LoFi)ビデオエンコーダの事前学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-28T22:18:14Z) - Short-Term Memory Optimization in Recurrent Neural Networks by
Autoencoder-based Initialization [79.42778415729475]
線形オートエンコーダを用いた列列の明示的暗記に基づく代替解を提案する。
このような事前学習が、長いシーケンスで難しい分類タスクを解くのにどのように役立つかを示す。
提案手法は, 長周期の復元誤差をはるかに小さくし, 微調整時の勾配伝播を良くすることを示す。
論文 参考訳(メタデータ) (2020-11-05T14:57:16Z) - Temporal-Spatial Neural Filter: Direction Informed End-to-End
Multi-channel Target Speech Separation [66.46123655365113]
ターゲット音声分離とは、混合信号からターゲット話者の音声を抽出することを指す。
主な課題は、複雑な音響環境とリアルタイム処理の要件である。
複数話者混合から対象音声波形を直接推定する時間空間ニューラルフィルタを提案する。
論文 参考訳(メタデータ) (2020-01-02T11:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。