Hyperspectral Image Clustering with Spatially-Regularized Ultrametrics
- URL: http://arxiv.org/abs/2004.05048v1
- Date: Fri, 10 Apr 2020 14:27:41 GMT
- Title: Hyperspectral Image Clustering with Spatially-Regularized Ultrametrics
- Authors: Shukun Zhang and James M. Murphy
- Abstract summary: We propose a method for the unsupervised clustering of hyperspectral images based on spatially regularized spectral clustering with ultrametric path distances.
The proposed method efficiently combines data density and geometry to distinguish between material classes in the data, without the need for training labels.
- Score: 7.487718119544157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for the unsupervised clustering of hyperspectral images
based on spatially regularized spectral clustering with ultrametric path
distances. The proposed method efficiently combines data density and geometry
to distinguish between material classes in the data, without the need for
training labels. The proposed method is efficient, with quasilinear scaling in
the number of data points, and enjoys robust theoretical performance
guarantees. Extensive experiments on synthetic and real HSI data demonstrate
its strong performance compared to benchmark and state-of-the-art methods. In
particular, the proposed method achieves not only excellent labeling accuracy,
but also efficiently estimates the number of clusters.
Related papers
- Fast and Scalable Semi-Supervised Learning for Multi-View Subspace Clustering [13.638434337947302]
FSSMSC is a novel solution to the high computational complexity commonly found in existing approaches.
The method generates a consensus anchor graph across all views, representing each data point as a sparse linear combination of chosen landmarks.
The effectiveness and efficiency of FSSMSC are validated through extensive experiments on multiple benchmark datasets of varying scales.
arXiv Detail & Related papers (2024-08-11T06:54:00Z) - Spectral Clustering for Discrete Distributions [22.450518079181542]
Traditionally, clustering of discrete distributions (D2C) has been approached using Wasserstein barycenter methods.
We show that spectral clustering combined with distribution affinity measures can be more accurate and efficient than barycenter methods.
We provide theoretical guarantees for the success of our methods in clustering distributions.
arXiv Detail & Related papers (2024-01-25T03:17:03Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Efficient and Flexible Sublabel-Accurate Energy Minimization [62.50191141358778]
We address the problem of minimizing a class of energy functions consisting of data and smoothness terms.
Existing continuous optimization methods can find sublabel-accurate solutions, but they are not efficient for large label spaces.
We propose an efficient sublabel-accurate method that utilizes the best properties of both continuous and discrete models.
arXiv Detail & Related papers (2022-06-20T06:58:55Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
We propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively.
We prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely.
arXiv Detail & Related papers (2022-04-23T02:45:55Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Human Motion Detection Using Sharpened Dimensionality Reduction and
Clustering [1.1172382217477126]
We propose clustering methods to easily label the 2D projections of high-dimensional data.
We test our pipeline of SDR and the clustering methods on a range of synthetic and real-world datasets.
We conclude that clustering SDR results yields better labeling results than clustering plain DR, and that k-means is the recommended clustering method for SDR.
arXiv Detail & Related papers (2022-02-23T18:18:25Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in density-based clustering algorithms.
We propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness.
arXiv Detail & Related papers (2021-10-11T09:00:33Z) - Divide-and-conquer based Large-Scale Spectral Clustering [8.545202841051582]
We propose a divide-and-conquer based large-scale spectral clustering method to strike a good balance between efficiency and effectiveness.
The proposed method achieves lower computational complexity than most existing large-scale spectral clustering.
arXiv Detail & Related papers (2021-04-30T15:09:45Z) - Heteroskedastic and Imbalanced Deep Learning with Adaptive
Regularization [55.278153228758434]
Real-world datasets are heteroskedastic and imbalanced.
Addressing heteroskedasticity and imbalance simultaneously is under-explored.
We propose a data-dependent regularization technique for heteroskedastic datasets.
arXiv Detail & Related papers (2020-06-29T01:09:50Z) - Scalable Spectral Clustering with Nystrom Approximation: Practical and
Theoretical Aspects [1.6752182911522515]
This work presents a principled spectral clustering algorithm that exploits spectral properties of the similarity matrix associated with sampled points to regulate accuracy-efficiency trade-offs.
The overarching goal of this work is to provide an improved baseline for future research directions to accelerate spectral clustering.
arXiv Detail & Related papers (2020-06-25T15:10:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.