Density-Based Clustering with Kernel Diffusion
- URL: http://arxiv.org/abs/2110.05096v3
- Date: Thu, 14 Oct 2021 04:41:31 GMT
- Title: Density-Based Clustering with Kernel Diffusion
- Authors: Chao Zheng, Yingjie Chen, Chong Chen, Jianqiang Huang, Xian-Sheng Hua
- Abstract summary: A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in density-based clustering algorithms.
We propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness.
- Score: 59.4179549482505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding a suitable density function is essential for density-based clustering
algorithms such as DBSCAN and DPC. A naive density corresponding to the
indicator function of a unit $d$-dimensional Euclidean ball is commonly used in
these algorithms. Such density suffers from capturing local features in complex
datasets. To tackle this issue, we propose a new kernel diffusion density
function, which is adaptive to data of varying local distributional
characteristics and smoothness. Furthermore, we develop a surrogate that can be
efficiently computed in linear time and space and prove that it is
asymptotically equivalent to the kernel diffusion density function. Extensive
empirical experiments on benchmark and large-scale face image datasets show
that the proposed approach not only achieves a significant improvement over
classic density-based clustering algorithms but also outperforms the
state-of-the-art face clustering methods by a large margin.
Related papers
- Clustering Based on Density Propagation and Subcluster Merging [92.15924057172195]
We propose a density-based node clustering approach that automatically determines the number of clusters and can be applied in both data space and graph space.
Unlike traditional density-based clustering methods, which necessitate calculating the distance between any two nodes, our proposed technique determines density through a propagation process.
arXiv Detail & Related papers (2024-11-04T04:09:36Z) - Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation [51.66997548477913]
We propose a novel feature-level consistency learning framework named Density-Descending Feature Perturbation (DDFP)
Inspired by the low-density separation assumption in semi-supervised learning, our key insight is that feature density can shed a light on the most promising direction for the segmentation classifier to explore.
The proposed DDFP outperforms other designs on feature-level perturbations and shows state of the art performances on both Pascal VOC and Cityscapes dataset.
arXiv Detail & Related papers (2024-03-11T06:59:05Z) - Empirical Density Estimation based on Spline Quasi-Interpolation with
applications to Copulas clustering modeling [0.0]
Density estimation is a fundamental technique employed in various fields to model and to understand the underlying distribution of data.
In this paper we propose the mono-variate approximation of the density using quasi-interpolation.
The presented algorithm is validated on artificial and real datasets.
arXiv Detail & Related papers (2024-02-18T11:49:38Z) - DECWA : Density-Based Clustering using Wasserstein Distance [1.4132765964347058]
We propose a new clustering algorithm based on spatial density and probabilistic approach.
We show that our approach outperforms other state-of-the-art density-based clustering methods on a wide variety of datasets.
arXiv Detail & Related papers (2023-10-25T11:10:08Z) - GFDC: A Granule Fusion Density-Based Clustering with Evidential
Reasoning [22.526274021556755]
density-based clustering algorithms are widely applied because they can detect clusters with arbitrary shapes.
This paper proposes a granule fusion density-based clustering with evidential reasoning (GFDC)
Both local and global densities of samples are measured by a sparse degree metric first.
Then information granules are generated in high-density and low-density regions, assisting in processing clusters with significant density differences.
arXiv Detail & Related papers (2023-05-20T06:27:31Z) - Fast Density Estimation for Density-based Clustering Methods [3.8972699157287702]
Density-based clustering algorithms are widely used for discovering clusters in pattern recognition and machine learning.
The robustness of density-based algorithms is heavily dominated by finding neighbors and calculating the density of each point which is time-consuming.
This paper proposes a density-based clustering framework by using the fast principal component analysis, which can be applied to density based methods to prune unnecessary distance calculations.
arXiv Detail & Related papers (2021-09-23T13:59:42Z) - Featurized Density Ratio Estimation [82.40706152910292]
In our work, we propose to leverage an invertible generative model to map the two distributions into a common feature space prior to estimation.
This featurization brings the densities closer together in latent space, sidestepping pathological scenarios where the learned density ratios in input space can be arbitrarily inaccurate.
At the same time, the invertibility of our feature map guarantees that the ratios computed in feature space are equivalent to those in input space.
arXiv Detail & Related papers (2021-07-05T18:30:26Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
Kernel mean embeddings represent probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space.
We show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense.
We provide algorithms to optimize such distributions in the finite-sample setting.
arXiv Detail & Related papers (2021-06-18T08:33:45Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
We show that the dense correlation volume representation is redundant and accurate flow estimation can be achieved with only a fraction of elements in it.
Experiments show that our method can reduce computational cost and memory use significantly, while maintaining high accuracy.
arXiv Detail & Related papers (2021-04-05T21:44:00Z) - A fast and efficient Modal EM algorithm for Gaussian mixtures [0.0]
In the modal approach to clustering, clusters are defined as the local maxima of the underlying probability density function.
The Modal EM algorithm is an iterative procedure that can identify the local maxima of any density function.
arXiv Detail & Related papers (2020-02-10T08:34:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.