論文の概要: Scaling Bayesian inference of mixed multinomial logit models to very
large datasets
- arxiv url: http://arxiv.org/abs/2004.05426v1
- Date: Sat, 11 Apr 2020 15:30:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 10:15:45.694203
- Title: Scaling Bayesian inference of mixed multinomial logit models to very
large datasets
- Title(参考訳): 混合多項ロジットモデルの大規模データセットへのベイズ推定のスケーリング
- Authors: Filipe Rodrigues
- Abstract要約: 本稿では,バックプロパゲーション,自動微分,GPU加速計算を活用するアモルティファイド変分推論手法を提案する。
本研究では, 後部近似の柔軟性を高めるために, フローの正規化がいかに有効かを示す。
- 参考スコア(独自算出の注目度): 9.442139459221785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational inference methods have been shown to lead to significant
improvements in the computational efficiency of approximate Bayesian inference
in mixed multinomial logit models when compared to standard Markov-chain Monte
Carlo (MCMC) methods without compromising accuracy. However, despite their
demonstrated efficiency gains, existing methods still suffer from important
limitations that prevent them to scale to very large datasets, while providing
the flexibility to allow for rich prior distributions and to capture complex
posterior distributions. In this paper, we propose an Amortized Variational
Inference approach that leverages stochastic backpropagation, automatic
differentiation and GPU-accelerated computation, for effectively scaling
Bayesian inference in Mixed Multinomial Logit models to very large datasets.
Moreover, we show how normalizing flows can be used to increase the flexibility
of the variational posterior approximations. Through an extensive simulation
study, we empirically show that the proposed approach is able to achieve
computational speedups of multiple orders of magnitude over traditional MSLE
and MCMC approaches for large datasets without compromising estimation
accuracy.
- Abstract(参考訳): 変分推論法は, マルコフ連鎖モンテカルロ法 (MCMC) と比較して, 混合多重項ロジットモデルにおける近似ベイズ推論の計算効率が, 精度を損なうことなく向上することが示されている。
しかし、その効果が実証されたにもかかわらず、既存の手法は依然として非常に大きなデータセットにスケールできない重要な制限に悩まされ、一方で、豊富な事前分布と複雑な後続分布をキャプチャする柔軟性を提供する。
本稿では,多項混合ロジットモデルのベイズ推論を大規模データセットに効果的にスケーリングするために,確率的バックプロパゲーション,自動微分,gpu高速化計算を活用した不定形変分推論手法を提案する。
さらに, 変動後続近似の柔軟性を高めるために, 流れの正規化がいかに用いられるかを示す。
シミュレーション実験により,提案手法は推定精度を損なうことなく,従来のMSLEおよびMCMCによる大規模データセットに対する複数桁の計算高速化を実現することができることを示した。
関連論文リスト
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
我々は、1.8万のデータポイントでトレーニングされた計算対応GPのモデル選択が、1つのGPU上で数時間以内に可能であることを示す。
この研究の結果、ガウス過程は、不確実性を定量化する能力を著しく妥協することなく、大規模なデータセットで訓練することができる。
論文 参考訳(メタデータ) (2024-11-01T21:11:48Z) - Gradient-free variational learning with conditional mixture networks [39.827869318925494]
条件付き混合ネットワーク(CMN)は、高速で勾配のない推論に適しており、複雑な分類タスクを解くことができる。
UCIレポジトリから標準ベンチマークで2層CMNをトレーニングすることで、このアプローチを検証する。
提案手法であるCAVI-CMNは,バックプロパゲーションを伴う最大推定値(MLE)と比較して,競合的かつしばしば優れた予測精度を実現する。
論文 参考訳(メタデータ) (2024-08-29T10:43:55Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - Bayesian Pseudo-Coresets via Contrastive Divergence [5.479797073162603]
対照的な発散を利用して擬似コアセットを構築するための新しい手法を提案する。
これは擬似コアセット構築プロセスにおける近似の必要性を排除する。
複数のデータセットに対して広範な実験を行い、既存のBPC技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T17:13:50Z) - Approximate Gibbs Sampler for Efficient Inference of Hierarchical Bayesian Models for Grouped Count Data [0.0]
本研究は、推定精度を維持しつつ、HBPRMを効率的に学習するための近似ギブスサンプリング器(AGS)を開発した。
実データと合成データを用いた数値実験により,AGSの優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-28T21:00:55Z) - $\beta$-Cores: Robust Large-Scale Bayesian Data Summarization in the
Presence of Outliers [14.918826474979587]
古典的ベイズ推定の質は、観測結果が推定データ生成モデルに適合するかどうかに大きく依存する。
本稿では,大容量データセットに同時スケール可能な変分推論手法を提案する。
多様なシミュレーションおよび実データ、および様々な統計モデルにおいて、我々のアプローチの適用性について説明する。
論文 参考訳(メタデータ) (2020-08-31T13:47:12Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z) - Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
Multimodal Posteriors [8.11978827493967]
MCMCの並列実行, 変動型, モードベースの推論を用いて, できるだけ多くのモードをヒットさせる手法を提案する。
重み付き推論プロセスが真のデータを近似する例と理論的整合性を示す。
いくつかのモデルファミリで実践的な実装を示す。
論文 参考訳(メタデータ) (2020-06-22T15:26:59Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。