Cross-domain Correspondence Learning for Exemplar-based Image
Translation
- URL: http://arxiv.org/abs/2004.05571v1
- Date: Sun, 12 Apr 2020 09:10:57 GMT
- Title: Cross-domain Correspondence Learning for Exemplar-based Image
Translation
- Authors: Pan Zhang, Bo Zhang, Dong Chen, Lu Yuan, Fang Wen
- Abstract summary: We present a framework for exemplar-based image translation, which synthesizes a photo-realistic image from the input in a distinct domain.
The output has the style (e.g., color, texture) in consistency with the semantically corresponding objects in the exemplar.
We show that our method is superior to state-of-the-art methods in terms of image quality significantly.
- Score: 59.35767271091425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a general framework for exemplar-based image translation, which
synthesizes a photo-realistic image from the input in a distinct domain (e.g.,
semantic segmentation mask, or edge map, or pose keypoints), given an exemplar
image. The output has the style (e.g., color, texture) in consistency with the
semantically corresponding objects in the exemplar. We propose to jointly learn
the crossdomain correspondence and the image translation, where both tasks
facilitate each other and thus can be learned with weak supervision. The images
from distinct domains are first aligned to an intermediate domain where dense
correspondence is established. Then, the network synthesizes images based on
the appearance of semantically corresponding patches in the exemplar. We
demonstrate the effectiveness of our approach in several image translation
tasks. Our method is superior to state-of-the-art methods in terms of image
quality significantly, with the image style faithful to the exemplar with
semantic consistency. Moreover, we show the utility of our method for several
applications
Related papers
- Masked and Adaptive Transformer for Exemplar Based Image Translation [16.93344592811513]
Cross-domain semantic matching is challenging.
We propose a masked and adaptive transformer (MAT) for learning accurate cross-domain correspondence.
We devise a novel contrastive style learning method, for acquire quality-discriminative style representations.
arXiv Detail & Related papers (2023-03-30T03:21:14Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
Story visualization aims to generate a sequence of images to narrate each sentence in a multi-sentence story.
Current works face the problem of semantic misalignment because of their fixed architecture and diversity of input modalities.
We explore the semantic alignment between text and image representations by learning to match their semantic levels in the GAN-based generative model.
arXiv Detail & Related papers (2022-11-14T11:41:44Z) - Marginal Contrastive Correspondence for Guided Image Generation [58.0605433671196]
Exemplar-based image translation establishes dense correspondences between a conditional input and an exemplar from two different domains.
Existing work builds the cross-domain correspondences implicitly by minimizing feature-wise distances across the two domains.
We design a Marginal Contrastive Learning Network (MCL-Net) that explores contrastive learning to learn domain-invariant features for realistic exemplar-based image translation.
arXiv Detail & Related papers (2022-04-01T13:55:44Z) - Multi-domain Unsupervised Image-to-Image Translation with Appearance
Adaptive Convolution [62.4972011636884]
We propose a novel multi-domain unsupervised image-to-image translation (MDUIT) framework.
We exploit the decomposed content feature and appearance adaptive convolution to translate an image into a target appearance.
We show that the proposed method produces visually diverse and plausible results in multiple domains compared to the state-of-the-art methods.
arXiv Detail & Related papers (2022-02-06T14:12:34Z) - Semantic Consistency in Image-to-Image Translation for Unsupervised
Domain Adaptation [22.269565708490465]
Unsupervised Domain Adaptation (UDA) aims to adapt models trained on a source domain to a new target domain where no labelled data is available.
We propose a semantically consistent image-to-image translation method in combination with a consistency regularisation method for UDA.
arXiv Detail & Related papers (2021-11-05T14:22:20Z) - Step-Wise Hierarchical Alignment Network for Image-Text Matching [29.07229472373576]
We propose a step-wise hierarchical alignment network (SHAN) that decomposes image-text matching into multi-step cross-modal reasoning process.
Specifically, we first achieve local-to-local alignment at fragment level, following by performing global-to-local and global-to-global alignment at context level sequentially.
arXiv Detail & Related papers (2021-06-11T17:05:56Z) - Semantically Adaptive Image-to-image Translation for Domain Adaptation
of Semantic Segmentation [1.8275108630751844]
We address the problem of domain adaptation for semantic segmentation of street scenes.
Many state-of-the-art approaches focus on translating the source image while imposing that the result should be semantically consistent with the input.
We advocate that the image semantics can also be exploited to guide the translation algorithm.
arXiv Detail & Related papers (2020-09-02T16:16:50Z) - Retrieval Guided Unsupervised Multi-domain Image-to-Image Translation [59.73535607392732]
Image to image translation aims to learn a mapping that transforms an image from one visual domain to another.
We propose the use of an image retrieval system to assist the image-to-image translation task.
arXiv Detail & Related papers (2020-08-11T20:11:53Z) - Contrastive Learning for Unpaired Image-to-Image Translation [64.47477071705866]
In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain.
We propose a framework based on contrastive learning to maximize mutual information between the two.
We demonstrate that our framework enables one-sided translation in the unpaired image-to-image translation setting, while improving quality and reducing training time.
arXiv Detail & Related papers (2020-07-30T17:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.