論文の概要: Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images
- arxiv url: http://arxiv.org/abs/2004.05645v1
- Date: Sun, 12 Apr 2020 16:24:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 05:23:39.687543
- Title: Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images
- Title(参考訳): COVID-19胸部CT画像の自動分類のための残留注意U-Net
- Authors: Xiaocong Chen, Lina Yao, Yu Zhang
- Abstract要約: 新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 46.844349956057776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The novel coronavirus disease 2019 (COVID-19) has been spreading rapidly
around the world and caused significant impact on the public health and
economy. However, there is still lack of studies on effectively quantifying the
lung infection caused by COVID-19. As a basic but challenging task of the
diagnostic framework, segmentation plays a crucial role in accurate
quantification of COVID-19 infection measured by computed tomography (CT)
images. To this end, we proposed a novel deep learning algorithm for automated
segmentation of multiple COVID-19 infection regions. Specifically, we use the
Aggregated Residual Transformations to learn a robust and expressive feature
representation and apply the soft attention mechanism to improve the capability
of the model to distinguish a variety of symptoms of the COVID-19. With a
public CT image dataset, we validate the efficacy of the proposed algorithm in
comparison with other competing methods. Experimental results demonstrate the
outstanding performance of our algorithm for automated segmentation of COVID-19
Chest CT images. Our study provides a promising deep leaning-based segmentation
tool to lay a foundation to quantitative diagnosis of COVID-19 lung infection
in CT images.
- Abstract(参考訳): 新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
しかし、新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだ残っていない。
診断枠組みの基本的な課題であるセグメンテーションは、CT画像によって測定された新型コロナウイルス感染症の正確な定量化に重要な役割を果たしている。
そこで本研究では,複数の感染症領域の自動分割のための新しいディープラーニングアルゴリズムを提案する。
具体的には、Aggregated Residual Transformationsを用いて、堅牢で表現力のある特徴表現を学習し、ソフトアテンションメカニズムを適用して、モデルの能力を改善し、さまざまな症状を識別する。
パブリックCT画像データセットを用いて,他の競合手法と比較して提案アルゴリズムの有効性を検証する。
実験により,Chest CT画像の自動分割のためのアルゴリズムの優れた性能が示された。
本研究は,ct画像におけるcovid-19肺感染症の定量的診断の基礎となる,深い傾きに基づくセグメンテーションツールを提供する。
関連論文リスト
- Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
本稿では、新型コロナウイルス患者の感染症領域を抽出するためのドメイン知識に基づくパイプラインを提案する。
感染の重症度は、3つの機械学習モデルのアンサンブルを使用して異なるカテゴリに分類される。
提案システムは,AI-Enabled Medical Image Analysis WorkshopとCOVID-19診断コンペティションの検証データセットを用いて評価した。
論文 参考訳(メタデータ) (2023-03-13T13:59:47Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
新型コロナウイルス(COVID-19)のパンデミック(パンデミック)の間、新型コロナウイルス(COVID-19)の診断のための緊急設定で実施される画像の量は、臨床用CXRの取得が広範囲に及んだ。
公開データセット内の臨床的に取得されたCXRの変動品質は、アルゴリズムのパフォーマンスに大きな影響を及ぼす可能性がある。
我々は、新型コロナウイルスの胸部X線データセットを前処理し、望ましくないバイアスを取り除くための、シンプルで効果的なステップワイズアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-22T13:57:04Z) - Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
Study on COVID-19 Chest X-ray Image [3.135883872525168]
胸部X線(CXR)やCT(CT)などの画像検査は、臨床スタッフに有用な情報を提供することができる。
深層学習は、新型コロナウイルス感染症領域のセグメンテーションと疾患分類の実行に応用されている。
本研究では,バッジ深層学習とモデル校正を統合した新しいアンサンブル深層学習モデルを提案する。
論文 参考訳(メタデータ) (2022-05-27T20:06:45Z) - Automatic segmentation of novel coronavirus pneumonia lesions in CT
images utilizing deep-supervised ensemble learning network [3.110938126026385]
新型コロナウイルス(COVID-19)の病変の構造は複雑で、様々なケースで大きく異なる。
過度に適合する問題を補うために、トランスファーラーニング戦略が採用されている。
深い教師付きアンサンブル学習ネットワークは、COVID-19の病変セグメンテーションの局所的特徴とグローバル的特徴を組み合わせるために提示される。
論文 参考訳(メタデータ) (2021-10-25T11:49:20Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z) - COVID-19 Chest CT Image Segmentation -- A Deep Convolutional Neural
Network Solution [34.08284037107891]
我々は,胸部CT画像と新型コロナウイルス感染のセグメンテーションに適した,新しい深部畳み込みニューラルネットワークを構築した。
感染した肺の境界線はグローバルな強度を調節することで高められるという観察にインスパイアされ,提案した深部CNNでは特徴変化ブロックを導入する。
提案したFVブロックは,多種多様なケースに対して効果的かつ適応的に特徴表現の能力を高めることができる。
論文 参考訳(メタデータ) (2020-04-23T06:09:16Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。