Training few-shot classification via the perspective of minibatch and
pretraining
- URL: http://arxiv.org/abs/2004.05910v1
- Date: Fri, 10 Apr 2020 03:14:48 GMT
- Title: Training few-shot classification via the perspective of minibatch and
pretraining
- Authors: Meiyu Huang, Xueshuang Xiang, Yao Xu
- Abstract summary: Few-shot classification is a challenging task which aims to formulate the ability of humans to learn concepts from limited prior data.
Recent progress in few-shot classification has featured meta-learning.
We propose multi-episode and cross-way training techniques, which respectively correspond to the minibatch and pretraining in classification problems.
- Score: 10.007569291231915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot classification is a challenging task which aims to formulate the
ability of humans to learn concepts from limited prior data and has drawn
considerable attention in machine learning. Recent progress in few-shot
classification has featured meta-learning, in which a parameterized model for a
learning algorithm is defined and trained to learn the ability of handling
classification tasks on extremely large or infinite episodes representing
different classification task, each with a small labeled support set and its
corresponding query set. In this work, we advance this few-shot classification
paradigm by formulating it as a supervised classification learning problem. We
further propose multi-episode and cross-way training techniques, which
respectively correspond to the minibatch and pretraining in classification
problems. Experimental results on a state-of-the-art few-shot classification
method (prototypical networks) demonstrate that both the proposed training
strategies can highly accelerate the training process without accuracy loss for
varying few-shot classification problems on Omniglot and miniImageNet.
Related papers
- A Closer Look at Few-shot Classification Again [68.44963578735877]
Few-shot classification consists of a training phase and an adaptation phase.
We empirically prove that the training algorithm and the adaptation algorithm can be completely disentangled.
Our meta-analysis for each phase reveals several interesting insights that may help better understand key aspects of few-shot classification.
arXiv Detail & Related papers (2023-01-28T16:42:05Z) - Label, Verify, Correct: A Simple Few Shot Object Detection Method [93.84801062680786]
We introduce a simple pseudo-labelling method to source high-quality pseudo-annotations from a training set.
We present two novel methods to improve the precision of the pseudo-labelling process.
Our method achieves state-of-the-art or second-best performance compared to existing approaches.
arXiv Detail & Related papers (2021-12-10T18:59:06Z) - Curriculum Meta-Learning for Few-shot Classification [1.5039745292757671]
We propose an adaptation of the curriculum training framework, applicable to state-of-the-art meta learning techniques for few-shot classification.
Our experiments with the MAML algorithm on two few-shot image classification tasks show significant gains with the curriculum training framework.
arXiv Detail & Related papers (2021-12-06T10:29:23Z) - Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid
Models [4.189643331553922]
We propose a deep invertible hybrid model which integrates discriminative and generative learning at a latent space level for semi-supervised few-shot classification.
Our main originality lies in our integration of these components at a latent space level, which is effective in preventing overfitting.
arXiv Detail & Related papers (2021-05-22T05:55:16Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - Few-Shot Image Classification via Contrastive Self-Supervised Learning [5.878021051195956]
We propose a new paradigm of unsupervised few-shot learning to repair the deficiencies.
We solve the few-shot tasks in two phases: meta-training a transferable feature extractor via contrastive self-supervised learning.
Our method achieves state of-the-art performance in a variety of established few-shot tasks on the standard few-shot visual classification datasets.
arXiv Detail & Related papers (2020-08-23T02:24:31Z) - Few-Shot Learning with Intra-Class Knowledge Transfer [100.87659529592223]
We consider the few-shot classification task with an unbalanced dataset.
Recent works have proposed to solve this task by augmenting the training data of the few-shot classes using generative models.
We propose to leverage the intra-class knowledge from the neighbor many-shot classes with the intuition that neighbor classes share similar statistical information.
arXiv Detail & Related papers (2020-08-22T18:15:38Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.