A Closer Look at Few-shot Classification Again
- URL: http://arxiv.org/abs/2301.12246v4
- Date: Thu, 1 Jun 2023 15:43:31 GMT
- Title: A Closer Look at Few-shot Classification Again
- Authors: Xu Luo, Hao Wu, Ji Zhang, Lianli Gao, Jing Xu, Jingkuan Song
- Abstract summary: Few-shot classification consists of a training phase and an adaptation phase.
We empirically prove that the training algorithm and the adaptation algorithm can be completely disentangled.
Our meta-analysis for each phase reveals several interesting insights that may help better understand key aspects of few-shot classification.
- Score: 68.44963578735877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot classification consists of a training phase where a model is learned
on a relatively large dataset and an adaptation phase where the learned model
is adapted to previously-unseen tasks with limited labeled samples. In this
paper, we empirically prove that the training algorithm and the adaptation
algorithm can be completely disentangled, which allows algorithm analysis and
design to be done individually for each phase. Our meta-analysis for each phase
reveals several interesting insights that may help better understand key
aspects of few-shot classification and connections with other fields such as
visual representation learning and transfer learning. We hope the insights and
research challenges revealed in this paper can inspire future work in related
directions. Code and pre-trained models (in PyTorch) are available at
https://github.com/Frankluox/CloserLookAgainFewShot.
Related papers
- Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
We study different self supervised pretext tasks, namely contrastive learning, clustering, and masked image modelling for their low-shot capabilities.
We introduce a framework involving both mask image modelling and clustering as pretext tasks, which performs better across all low-shot downstream tasks.
When testing the model on full scale datasets, we show performance gains in multi-class classification, multi-label classification and semantic segmentation.
arXiv Detail & Related papers (2024-06-25T10:56:03Z) - Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
arXiv Detail & Related papers (2024-05-23T17:17:27Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - Partner-Assisted Learning for Few-Shot Image Classification [54.66864961784989]
Few-shot Learning has been studied to mimic human visual capabilities and learn effective models without the need of exhaustive human annotation.
In this paper, we focus on the design of training strategy to obtain an elemental representation such that the prototype of each novel class can be estimated from a few labeled samples.
We propose a two-stage training scheme, which first trains a partner encoder to model pair-wise similarities and extract features serving as soft-anchors, and then trains a main encoder by aligning its outputs with soft-anchors while attempting to maximize classification performance.
arXiv Detail & Related papers (2021-09-15T22:46:19Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
This work focuses on few-shot relation classification (FSRC)
We propose an adaptive mixture mechanism to add label words to the representation of the class prototype.
Experiments have been conducted on FewRel under different few-shot (FS) settings.
arXiv Detail & Related papers (2021-01-10T11:25:42Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets.
We introduce a novel training approach for existing FSC models.
We show that explanation-guided training effectively improves the model generalization.
arXiv Detail & Related papers (2020-07-17T07:28:08Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - Simultaneous Perturbation Stochastic Approximation for Few-Shot Learning [0.5801044612920815]
We propose a prototypical-like few-shot learning approach based on the prototypical networks method.
The results of experiments on the benchmark dataset demonstrate that the proposed method is superior to the original networks.
arXiv Detail & Related papers (2020-06-09T09:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.