Towards GANs' Approximation Ability
- URL: http://arxiv.org/abs/2004.05912v2
- Date: Sat, 11 Jul 2020 06:00:08 GMT
- Title: Towards GANs' Approximation Ability
- Authors: Xuejiao Liu, Yao Xu, Xueshuang Xiang
- Abstract summary: This paper will first theoretically analyze GANs' approximation property.
We prove that the generator with the input latent variable in GANs can universally approximate the potential data distribution.
In the practical dataset, four GANs using SDG can also outperform the corresponding traditional GANs when the model architectures are smaller.
- Score: 8.471366736328811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks (GANs) have attracted intense interest in the
field of generative models. However, few investigations focusing either on the
theoretical analysis or on algorithm design for the approximation ability of
the generator of GANs have been reported. This paper will first theoretically
analyze GANs' approximation property. Similar to the universal approximation
property of the fully connected neural networks with one hidden layer, we prove
that the generator with the input latent variable in GANs can universally
approximate the potential data distribution given the increasing hidden
neurons. Furthermore, we propose an approach named stochastic data generation
(SDG) to enhance GANs'approximation ability. Our approach is based on the
simple idea of imposing randomness through data generation in GANs by a prior
distribution on the conditional probability between the layers. SDG approach
can be easily implemented by using the reparameterization trick. The
experimental results on synthetic dataset verify the improved approximation
ability obtained by this SDG approach. In the practical dataset, four GANs
using SDG can also outperform the corresponding traditional GANs when the model
architectures are smaller.
Related papers
- Generative adversarial networks for data-scarce spectral applications [0.0]
We report on an application of GANs in the domain of synthetic spectral data generation.
We show that CWGANs can act as a surrogate model with improved performance in the low-data regime.
arXiv Detail & Related papers (2023-07-14T16:27:24Z) - Using Intermediate Forward Iterates for Intermediate Generator
Optimization [14.987013151525368]
Intermediate Generator Optimization can be incorporated into any standard autoencoder pipeline for the generative task.
We show applications of the IGO on two dense predictive tasks viz., image extrapolation, and point cloud denoising.
arXiv Detail & Related papers (2023-02-05T08:46:15Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Improving Generative Adversarial Networks with Local Coordinate Coding [150.24880482480455]
Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution.
In practice, semantic information might be represented by some latent distribution learned from data.
We propose an LCCGAN model with local coordinate coding (LCC) to improve the performance of generating data.
arXiv Detail & Related papers (2020-07-28T09:17:50Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z) - Generative Adversarial Networks (GANs): An Overview of Theoretical
Model, Evaluation Metrics, and Recent Developments [9.023847175654602]
Generative Adversarial Network (GAN) is an effective method to produce samples of large-scale data distribution.
GANs provide an appropriate way to learn deep representations without widespread use of labeled training data.
In GANs, the generative model is estimated via a competitive process where the generator and discriminator networks are trained simultaneously.
arXiv Detail & Related papers (2020-05-27T05:56:53Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data.
We introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGAN's discriminator.
We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.
arXiv Detail & Related papers (2020-04-05T01:50:16Z) - GANs with Conditional Independence Graphs: On Subadditivity of
Probability Divergences [70.30467057209405]
Generative Adversarial Networks (GANs) are modern methods to learn the underlying distribution of a data set.
GANs are designed in a model-free fashion where no additional information about the underlying distribution is available.
We propose a principled design of a model-based GAN that uses a set of simple discriminators on the neighborhoods of the Bayes-net/MRF.
arXiv Detail & Related papers (2020-03-02T04:31:22Z) - Brainstorming Generative Adversarial Networks (BGANs): Towards
Multi-Agent Generative Models with Distributed Private Datasets [70.62568022925971]
generative adversarial networks (GANs) must be fed by large datasets that adequately represent the data space.
In many scenarios, the available datasets may be limited and distributed across multiple agents, each of which is seeking to learn the distribution of the data on its own.
In this paper, a novel brainstorming GAN (BGAN) architecture is proposed using which multiple agents can generate real-like data samples while operating in a fully distributed manner.
arXiv Detail & Related papers (2020-02-02T02:58:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.