論文の概要: Improving Expressivity of Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2004.05994v1
- Date: Wed, 8 Apr 2020 17:24:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 08:17:18.209906
- Title: Improving Expressivity of Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークの表現性向上
- Authors: Stanis{\l}aw Purga{\l}
- Abstract要約: 一般的なGNNよりも表現力の高いグラフニューラルネットワークを提案する。
我々は、指数関数的に離れたノードから情報を集約する注目ウィンドウを拡大したグラフアテンションネットワークを使用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a Graph Neural Network with greater expressive power than commonly
used GNNs - not constrained to only differentiate between graphs that
Weisfeiler-Lehman test recognizes to be non-isomorphic. We use a graph
attention network with expanding attention window that aggregates information
from nodes exponentially far away. We also use partially random initial
embeddings, allowing differentiation between nodes that would otherwise look
the same. This could cause problem with a traditional dropout mechanism,
therefore we use a "head dropout", randomly ignoring some attention heads
rather than some dimensions of the embedding.
- Abstract(参考訳): Wesfeiler-Lehmanテストが非同型であると認識しているグラフを区別することのみを制約しない、一般的なGNNよりも表現力の高いグラフニューラルネットワークを提案する。
我々は、指数関数的に離れたノードから情報を集約する注目ウィンドウを拡大したグラフアテンションネットワークを使用する。
また、部分的にランダムな初期埋め込みを使用し、そうでなければ同じように見えるノード間の区別を可能にします。
これは従来のドロップアウト機構に問題を引き起こす可能性があるため、埋め込みのいくつかの次元ではなく、ランダムに注意を無視する「ヘッドドロップアウト」を使用する。
関連論文リスト
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - Uplifting the Expressive Power of Graph Neural Networks through Graph
Partitioning [3.236774847052122]
グラフ分割のレンズによるグラフニューラルネットワークの表現力について検討する。
我々は新しいGNNアーキテクチャ、すなわちグラフ分割ニューラルネットワーク(GPNN)を導入する。
論文 参考訳(メタデータ) (2023-12-14T06:08:35Z) - Self-attention Dual Embedding for Graphs with Heterophily [6.803108335002346]
多くの実世界のグラフはヘテロ親和性があり、標準のGNNを用いた分類精度ははるかに低い。
ヘテロ親和性グラフとホモ親和性グラフの両方に有効である新しいGNNを設計する。
我々は,数千から数百万のノードを含む実世界のグラフ上でアルゴリズムを評価し,最先端の結果が得られたことを示す。
論文 参考訳(メタデータ) (2023-05-28T09:38:28Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
そこで我々はMatchExplainerと呼ばれる新しい非パラメトリックな部分グラフマッチングフレームワークを提案し、説明的部分グラフを探索する。
ターゲットグラフと他のインスタンスを結合し、ノードに対応する距離を最小化することで最も重要な結合部分構造を識別する。
合成および実世界のデータセットの実験は、最先端のパラメトリックベースラインをかなりのマージンで上回り、MatchExplainerの有効性を示す。
論文 参考訳(メタデータ) (2023-01-07T05:14:45Z) - DiP-GNN: Discriminative Pre-Training of Graph Neural Networks [49.19824331568713]
GNNのパワーを高めるために,グラフニューラルネットワーク(GNN)事前学習法が提案されている。
一般的な事前トレーニング手法の1つは、エッジのパーセンテージをマスクアウトすることであり、GNNはそれらを回復するように訓練されている。
筆者らのフレームワークでは, 識別器が見るグラフは, マスキングエッジの比率を回復できるため, 元のグラフとよく一致している。
論文 参考訳(メタデータ) (2022-09-15T17:41:50Z) - Graph Neural Network Bandits [89.31889875864599]
グラフ構造データ上で定義された報酬関数を用いた帯域最適化問題を考察する。
この設定の主な課題は、大きなドメインへのスケーリングと、多くのノードを持つグラフへのスケーリングである。
グラフニューラルネットワーク(GNN)を用いて報酬関数を推定できることを示す。
論文 参考訳(メタデータ) (2022-07-13T18:12:36Z) - Graph Attention Retrospective [14.52271219759284]
グラフベースの学習は、ソーシャルネットワーク、引用ネットワーク、バイオインフォマティクスに応用された機械学習の急速に成長するサブフィールドである。
本稿では,グラフ注意ネットワークの挙動を理論的に検討する。
ガウスの手段間の距離が十分大きい「容易」な体制では、グラフの注意はクラス内縁とクラス間縁を区別することができる。
硬い」体制では、すべての注意機構がクラス内エッジとクラス間エッジを区別できないことを示す。
論文 参考訳(メタデータ) (2022-02-26T04:58:36Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Graph Decoupling Attention Markov Networks for Semi-supervised Graph
Node Classification [38.52231889960877]
グラフニューラルネットワーク(GNN)は、ノード分類などのグラフ学習タスクにおいてユビキタスである。
本稿では,グラフノードのラベル依存を考察し,ハードとソフトの両方の注意を学ぶための分離注意機構を提案する。
論文 参考訳(メタデータ) (2021-04-28T11:44:13Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Natural Graph Networks [80.77570956520482]
より一般的な自然性の概念がグラフネットワークを適切に定義するのに十分であることを示す。
グローバルおよびローカルな自然グラフネットワークを定義し、後者は従来のメッセージパッシンググラフニューラルネットワークと同じくらいスケーラブルである。
論文 参考訳(メタデータ) (2020-07-16T14:19:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。