Postquantum common-cause channels: the resource theory of local
operations and shared entanglement
- URL: http://arxiv.org/abs/2004.06133v4
- Date: Sun, 21 Mar 2021 03:59:52 GMT
- Title: Postquantum common-cause channels: the resource theory of local
operations and shared entanglement
- Authors: David Schmid, Haoxing Du, Maryam Mudassar, Ghi Coulter-de Wit, Denis
Rosset, Matty J. Hoban
- Abstract summary: We define the type-independent resource theory of local operations and shared entanglement (LOSE)
This allows us to formally quantify postquantumness in common-cause scenarios such as the Bell scenario.
We prove several fundamental results regarding how the type of a resource determines what conversions into other resources are possible.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We define the type-independent resource theory of local operations and shared
entanglement (LOSE). This allows us to formally quantify postquantumness in
common-cause scenarios such as the Bell scenario. Any nonsignaling bipartite
quantum channel which cannot be generated by LOSE operations requires a
postquantum common cause to generate, and constitutes a valuable resource. Our
framework allows LOSE operations that arbitrarily transform between different
types of resources, which in turn allows us to undertake a systematic study of
the different manifestations of postquantum common causes. Only three of these
have been previously recognized, namely postquantum correlations, postquantum
steering, and non-localizable channels, all of which are subsumed as special
cases of resources in our framework. Finally, we prove several fundamental
results regarding how the type of a resource determines what conversions into
other resources are possible, and also places constraints on the resource's
ability to provide an advantage in distributed tasks such as nonlocal games,
semiquantum games, steering games, etc.
Related papers
- Consistency and Causality of Interconnected Nonsignaling Resources [0.0]
This paper examines networks of $n$ measuring parties sharing $m$ independent nonsignaling resources that can be locally wired together.
A specific framework is provided for studying probability distributions arising in such networks.
arXiv Detail & Related papers (2024-05-28T17:50:16Z) - The Multiple-Access Channel with Entangled Transmitters [67.92544792239086]
Communication over a classical multiple-access channel (MAC) with entanglement resources is considered.
We establish inner and outer bounds on the capacity region for the general MAC with entangled transmitters.
Using superdense coding, entanglement can double the conferencing rate.
arXiv Detail & Related papers (2023-03-18T16:51:08Z) - Experimental full network nonlocality with independent sources and
strict locality constraints [59.541438315564854]
Nonlocality in networks gives rise to phenomena radically different from that in standard Bell scenarios.
We experimentally observe full network nonlocality in a network where the source-independence, locality, and measurement-independence loopholes are closed.
Our experiment violates known inequalities characterizing non-full network nonlocal correlations by over five standard deviations.
arXiv Detail & Related papers (2023-02-05T20:03:58Z) - Unifying different notions of quantum incompatibility into a strict
hierarchy of resource theories of communication [60.18814584837969]
We introduce the notion of q-compatibility, which unifies different notions of POVMs, channels, and instruments incompatibility.
We are able to pinpoint exactly what each notion of incompatibility consists of, in terms of information-theoretic resources.
arXiv Detail & Related papers (2022-11-16T21:33:31Z) - One-Shot Yield-Cost Relations in General Quantum Resource Theories [5.37133760455631]
We establish a relation between the one-shot distillable resource yield and dilution cost.
We show that our techniques provide strong converse bounds relating the distillable resource and resource dilution cost in the regime.
arXiv Detail & Related papers (2021-10-05T17:59:30Z) - Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding [58.720142291102135]
We define a resource measure for magic, the sought-after property in most fault-tolerant quantum computers.
Our formulation is based on bosonic codes, well-studied tools in continuous-variable quantum computation.
arXiv Detail & Related papers (2021-09-27T12:56:01Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - One-shot dynamical resource theory [16.046979670252814]
We consider tasks of one-shot resource distillation and dilution with a single copy of the resource.
For any target of unitary channel or pure state preparation channel, we establish a universal strategy to determine upper and lower bounds on rates that convert between any given resource and the target.
Our results are applicable to general dynamical resource theories with potential applications in quantum communication, fault-tolerant quantum computing, and quantum thermodynamics.
arXiv Detail & Related papers (2020-12-04T18:57:42Z) - One-Shot Manipulation of Dynamical Quantum Resources [0.0]
We develop a unified framework to characterize one-shot transformations of dynamical quantum resources in terms of resource quantifiers.
Our framework encompasses all dynamical resources represented as quantum channels.
We show that our conditions become necessary and sufficient for broad classes of important theories.
arXiv Detail & Related papers (2020-12-03T19:09:14Z) - Operational quantification of continuous-variable quantum resources [6.308539010172309]
We introduce a general method of quantifying resources for continuous-variable quantum systems based on the measure.
We show that the robustness constitutes a well-behaved, bona fide resource quantifier in any convex resource theory.
arXiv Detail & Related papers (2020-09-23T18:00:03Z) - Universal Source-Free Domain Adaptation [57.37520645827318]
We propose a novel two-stage learning process for domain adaptation.
In the Procurement stage, we aim to equip the model for future source-free deployment, assuming no prior knowledge of the upcoming category-gap and domain-shift.
In the Deployment stage, the goal is to design a unified adaptation algorithm capable of operating across a wide range of category-gaps.
arXiv Detail & Related papers (2020-04-09T07:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.