One-Shot Yield-Cost Relations in General Quantum Resource Theories
- URL: http://arxiv.org/abs/2110.02212v3
- Date: Sat, 5 Nov 2022 09:51:49 GMT
- Title: One-Shot Yield-Cost Relations in General Quantum Resource Theories
- Authors: Ryuji Takagi and Bartosz Regula and Mark M. Wilde
- Abstract summary: We establish a relation between the one-shot distillable resource yield and dilution cost.
We show that our techniques provide strong converse bounds relating the distillable resource and resource dilution cost in the regime.
- Score: 5.37133760455631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although it is well known that the amount of resources that can be
asymptotically distilled from a quantum state or channel does not exceed the
resource cost needed to produce it, the corresponding relation in the
non-asymptotic regime hitherto has not been well understood. Here, we establish
a quantitative relation between the one-shot distillable resource yield and
dilution cost in terms of transformation errors involved in these processes.
Notably, our bound is applicable to quantum state and channel manipulation with
respect to any type of quantum resource and any class of free transformations
thereof, encompassing broad types of settings, including entanglement, quantum
thermodynamics, and quantum communication. We also show that our techniques
provide strong converse bounds relating the distillable resource and resource
dilution cost in the asymptotic regime. Moreover, we introduce a class of
channels that generalize twirling maps encountered in many resource theories,
and by directly connecting it with resource quantification, we compute
analytically several smoothed resource measures and improve our one-shot
yield--cost bound in relevant theories. We use these operational insights to
exactly evaluate important measures for various resource states in the resource
theory of magic states.
Related papers
- Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories [47.02222405817297]
A fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function.
In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing.
In 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law.
arXiv Detail & Related papers (2024-08-05T18:00:00Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
Quantum computing networks execute large-scale generative AI computation tasks and advanced quantum algorithms.
efficient resource allocation in quantum computing networks is a critical challenge due to qubit variability and network complexity.
We introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation.
arXiv Detail & Related papers (2024-01-13T17:16:38Z) - Unifying different notions of quantum incompatibility into a strict
hierarchy of resource theories of communication [60.18814584837969]
We introduce the notion of q-compatibility, which unifies different notions of POVMs, channels, and instruments incompatibility.
We are able to pinpoint exactly what each notion of incompatibility consists of, in terms of information-theoretic resources.
arXiv Detail & Related papers (2022-11-16T21:33:31Z) - Shannon theory beyond quantum: information content of a source [68.8204255655161]
We extend the definition of information content to operational probabilistic theories.
We prove relevant properties as the subadditivity, and the relation between purity and information content of a state.
arXiv Detail & Related papers (2021-12-23T16:36:06Z) - Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding [58.720142291102135]
We define a resource measure for magic, the sought-after property in most fault-tolerant quantum computers.
Our formulation is based on bosonic codes, well-studied tools in continuous-variable quantum computation.
arXiv Detail & Related papers (2021-09-27T12:56:01Z) - Asymptotically Consistent Measures of General Quantum Resources:
Discord, Non-Markovianity, and Non-Gaussianity [1.90365714903665]
In this paper, we establish an alternative axiom, of resource measures, which quantify resources without contradicting the rates of the resource transformation.
Results show that consistent resource measures are widely applicable to the quantitative analysis of various quantum-dimensional properties.
arXiv Detail & Related papers (2021-03-09T19:08:36Z) - One-shot dynamical resource theory [16.046979670252814]
We consider tasks of one-shot resource distillation and dilution with a single copy of the resource.
For any target of unitary channel or pure state preparation channel, we establish a universal strategy to determine upper and lower bounds on rates that convert between any given resource and the target.
Our results are applicable to general dynamical resource theories with potential applications in quantum communication, fault-tolerant quantum computing, and quantum thermodynamics.
arXiv Detail & Related papers (2020-12-04T18:57:42Z) - One-Shot Manipulation of Dynamical Quantum Resources [0.0]
We develop a unified framework to characterize one-shot transformations of dynamical quantum resources in terms of resource quantifiers.
Our framework encompasses all dynamical resources represented as quantum channels.
We show that our conditions become necessary and sufficient for broad classes of important theories.
arXiv Detail & Related papers (2020-12-03T19:09:14Z) - No-go theorems for quantum resource purification II: new approach and
channel theory [9.143899839206043]
We develop a novel and powerful method for analyzing the limitations on quantum resource purification.
We employ the new method to derive universal bounds on the error and cost of transforming generic noisy channels.
We discuss the connections and applications of our general results to distillation, quantum error correction, quantum Shannon theory, and quantum circuit synthesis.
arXiv Detail & Related papers (2020-10-22T16:00:09Z) - Coordinated Online Learning for Multi-Agent Systems with Coupled
Constraints and Perturbed Utility Observations [91.02019381927236]
We introduce a novel method to steer the agents toward a stable population state, fulfilling the given resource constraints.
The proposed method is a decentralized resource pricing method based on the resource loads resulting from the augmentation of the game's Lagrangian.
arXiv Detail & Related papers (2020-10-21T10:11:17Z) - General Quantum Resource Theories: Distillation, Formation and
Consistent Resource Measures [3.8073142980733]
Quantum resource theories (QRTs) provide a unified theoretical framework for understanding inherent quantum-mechanical properties that serve as resources in quantum information processing.
But resources motivated by physics may possess intractable mathematical structure to analyze, such as non-uniqueness of maximally resourceful states, lack of convexity, and infinite dimension.
We investigate state conversion and resource measures in general QRTs under minimal assumptions to figure out universal properties of physically motivated quantum resources.
arXiv Detail & Related papers (2020-02-06T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.