Quantum many-body physics from a gravitational lens
- URL: http://arxiv.org/abs/2004.06159v1
- Date: Mon, 13 Apr 2020 19:05:24 GMT
- Title: Quantum many-body physics from a gravitational lens
- Authors: Hong Liu and Julian Sonner
- Abstract summary: We discuss recent developments in holographic duality in connection with quantum many-body dynamics.
These include insights into strongly correlated phases without quasiparticles and their transport properties.
We also discuss recent progress in understanding the structure of holographic duality itself using quantum information.
- Score: 8.020530603813416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The last two decades have seen the emergence of stunning interconnections
among various previously remotely related disciplines such as condensed matter,
nuclear physics, gravity and quantum information, fueled both by experimental
advances and new powerful theoretical methods brought by holographic duality.
In this non-technical review we sample some recent developments in holographic
duality in connection with quantum many-body dynamics. These include insights
into strongly correlated phases without quasiparticles and their transport
properties, quantum many-body chaos, and scrambling of quantum information. We
also discuss recent progress in understanding the structure of holographic
duality itself using quantum information, including a "local" version of the
duality as well as the quantum error correction interpretation of quantum
many-body states with a gravity dual, and how such notions help demonstrate the
unitarity of black hole evaporation.
Related papers
- Causality and a possible interpretation of quantum mechanics [2.7398542529968477]
Based on quantum field theory, our work provides a framework that harmoniously integrates relativistic causality, quantum non-locality, and quantum measurement.
We use reduced density matrices to represent the local information of the quantum state and show that the reduced density matrices cannot evolve superluminally.
Unlike recent approaches that focus on causality by introducing new operators to describe detectors, we consider that everything--including detectors, environments, and humans--is composed of the same fundamental fields.
arXiv Detail & Related papers (2024-02-08T07:07:22Z) - Hyperfine Structure of Quantum Entanglement [8.203995433574182]
We introduce the textithyperfine structure of entanglement, which dissects entanglement contours known as the fine structure into particle-number cumulants.
Our findings suggest experimental accessibility, offering fresh insights into quantum entanglement across physical systems.
arXiv Detail & Related papers (2023-11-03T15:49:56Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Editorial: New Frontiers in Holographic Duality -- From quantum
complexity and black holes to hydrodynamics and neutron stars [0.6091702876917281]
holographic duality has revolutionised our understanding of gauge theories, quantum many-body systems and also quantum black holes.
This topical issue is a collection of review articles on recent advances in fundamentals of holographic duality.
arXiv Detail & Related papers (2022-10-07T04:23:09Z) - Complementarity-Entanglement Tradeoff in Quantum Gravity [0.0]
Quantization of the gravity remains one of the most important, yet extremely illusive, challenges at the heart of modern physics.
Recently, it has been discovered that gravitationally-induced entanglement, tailored in the interferometric frameworks, can be used to witness the quantum nature of the gravity.
arXiv Detail & Related papers (2022-05-04T09:34:10Z) - Quantum eraser from duality--entanglement perspective [0.0]
Quantum eraser presents a counterintuitive aspect of the wave-particle duality.
We show that quantum eraser can be quantitatively understood in terms of the recently developed duality--entanglement relation.
We find that a controllable partial erasure of the which-path information is attainable.
arXiv Detail & Related papers (2021-10-24T03:56:30Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Holographic tensor network models and quantum error correction: A
topical review [78.28647825246472]
Recent progress in studies of holographic dualities has led to a confluence with concepts and techniques from quantum information theory.
A particularly successful approach has involved capturing holographic properties by means of tensor networks.
arXiv Detail & Related papers (2021-02-04T14:09:21Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.