Quantum eraser from duality--entanglement perspective
- URL: http://arxiv.org/abs/2110.12346v1
- Date: Sun, 24 Oct 2021 03:56:30 GMT
- Title: Quantum eraser from duality--entanglement perspective
- Authors: Yusef Maleki, Jiru Liu, M. Suhail Zubairy
- Abstract summary: Quantum eraser presents a counterintuitive aspect of the wave-particle duality.
We show that quantum eraser can be quantitatively understood in terms of the recently developed duality--entanglement relation.
We find that a controllable partial erasure of the which-path information is attainable.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wave-particle duality is a bizarre feature at the heart of quantum mechanics
which refers to the mutually exclusive dual attributes of quantum objects as
the wave and the particle. Quantum eraser presents a counterintuitive aspect of
the wave-particle duality.
In this work, we show that quantum eraser can be quantitatively understood in
terms of the recently developed duality--entanglement relation. In other words,
we show that wave-particle-entanglement triality captures all the physics of
the quantum erasure. We find that a controllable partial erasure of the
which-path information is attainable, enabling the partial recovery of the
quantum interference and extending the scope of the conventional quantum eraser
protocols.
Related papers
- Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Separating the wave and particle attributes of two entangled photons [0.0]
In our common sense, the wave and particle properties of a quantum object are inseparable.
In this study, we put forward a feasible scheme to spatially separate the wave and particle attributes of two entangled photons.
Our scheme also guarantees that the observation of wave and particle properties of the two entangled photons always obey the Bohr's complementarity principle.
arXiv Detail & Related papers (2023-12-03T08:18:50Z) - A probabilistic view of wave-particle duality for single photons [0.0]
We show that the simultaneous measurement of the wave amplitude and the number of photons in the same beam of light is prohibited by the laws of quantum mechanics.
Our results suggest that the concept of interferometric duality'' could be eventually replaced by the more general one of continuous-vs-discrete duality''
arXiv Detail & Related papers (2023-03-27T13:21:25Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Experimental demonstration of separating the waveparticle duality of a
single photon with the quantum Cheshire cat [18.728749435511805]
We experimentally separated the wave and particle attributes of a single photon by exploiting the quantum Cheshire cat concept.
By applying a weak disturbance to the evolution of the system, we achieve an effect similar to the quantum Cheshire cat.
arXiv Detail & Related papers (2023-03-09T11:35:01Z) - Quantum coherence with incomplete set of pointers and corresponding
wave-particle duality [0.0]
Quantum coherence quantifies the amount of superposition in a quantum system.
We develop the corresponding resource theory, identifying the free states and operations.
We obtain a complementarity relation between the so-defined quantum coherence and the which-path information in an interferometric set-up.
arXiv Detail & Related papers (2021-08-12T16:55:40Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Quantum Observables and Ockham's Razor [0.0]
Correspondence Principle, combined with classical wave DSEs, is sufficient to separate and anticipate the observed quantum particle and wave phenomena.
Ockham's Razor infers that a theoretical quantum system consists of at least one quantum particle plus a wave function specifying the distribution of a large number of such particles.
arXiv Detail & Related papers (2020-12-29T20:05:18Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Wave and particle properties can be spatially separated in a quantum
entity [0.0]
The principle of wave-particle duality has been deeply rooted in people's hearts.
In classical physics, a similar common sense is that a physical system is inseparable from its physical properties.
We find that wave and particle attributes of a quantum entity can be completely separated.
arXiv Detail & Related papers (2020-09-01T16:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.