Blind Quality Assessment for Image Superresolution Using Deep Two-Stream
Convolutional Networks
- URL: http://arxiv.org/abs/2004.06163v1
- Date: Mon, 13 Apr 2020 19:14:28 GMT
- Title: Blind Quality Assessment for Image Superresolution Using Deep Two-Stream
Convolutional Networks
- Authors: Wei Zhou, Qiuping Jiang, Yuwang Wang, Zhibo Chen, Weiping Li
- Abstract summary: We propose a no-reference/blind deep neural network-based SR image quality assessor (DeepSRQ)
To learn more discriminative feature representations of various distorted SR images, the proposed DeepSRQ is a two-stream convolutional network.
Experimental results on three publicly available SR image quality databases demonstrate the effectiveness and generalization ability of our proposed DeepSRQ.
- Score: 41.558981828761574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous image superresolution (SR) algorithms have been proposed for
reconstructing high-resolution (HR) images from input images with lower spatial
resolutions. However, effectively evaluating the perceptual quality of SR
images remains a challenging research problem. In this paper, we propose a
no-reference/blind deep neural network-based SR image quality assessor
(DeepSRQ). To learn more discriminative feature representations of various
distorted SR images, the proposed DeepSRQ is a two-stream convolutional network
including two subcomponents for distorted structure and texture SR images.
Different from traditional image distortions, the artifacts of SR images cause
both image structure and texture quality degradation. Therefore, we choose the
two-stream scheme that captures different properties of SR inputs instead of
directly learning features from one image stream. Considering the human visual
system (HVS) characteristics, the structure stream focuses on extracting
features in structural degradations, while the texture stream focuses on the
change in textural distributions. In addition, to augment the training data and
ensure the category balance, we propose a stride-based adaptive cropping
approach for further improvement. Experimental results on three publicly
available SR image quality databases demonstrate the effectiveness and
generalization ability of our proposed DeepSRQ method compared with
state-of-the-art image quality assessment algorithms.
Related papers
- Perception- and Fidelity-aware Reduced-Reference Super-Resolution Image Quality Assessment [25.88845910499606]
We propose a novel dual-branch reduced-reference SR-IQA network, ie, Perception- and Fidelity-aware SR-IQA (PFIQA)
PFIQA outperforms current state-of-the-art models across three widely-used SR-IQA benchmarks.
arXiv Detail & Related papers (2024-05-15T16:09:22Z) - A No-Reference Deep Learning Quality Assessment Method for
Super-resolution Images Based on Frequency Maps [39.58198651685851]
We propose a no-reference deep-learning image quality assessment method based on frequency maps.
We first obtain the high-frequency map (HM) and low-frequency map (LM) of SRI by using Sobel operator and piecewise smooth image approximation.
Our method outperforms all compared IQA models on the selected three super-resolution quality assessment (SRQA) databases.
arXiv Detail & Related papers (2022-06-09T05:43:37Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Textural-Structural Joint Learning for No-Reference Super-Resolution
Image Quality Assessment [59.91741119995321]
We develop a dual stream network to jointly explore the textural and structural information for quality prediction, dubbed TSNet.
By mimicking the human vision system (HVS) that pays more attention to the significant areas of the image, we develop the spatial attention mechanism to make the visual-sensitive areas more distinguishable.
Experimental results show the proposed TSNet predicts the visual quality more accurate than the state-of-the-art IQA methods, and demonstrates better consistency with the human's perspective.
arXiv Detail & Related papers (2022-05-27T09:20:06Z) - SPQE: Structure-and-Perception-Based Quality Evaluation for Image
Super-Resolution [24.584839578742237]
Super-Resolution technique has greatly improved the visual quality of images by enhancing their resolutions.
It also calls for an efficient SR Image Quality Assessment (SR-IQA) to evaluate those algorithms or their generated images.
In emerging deep-learning-based SR, a generated high-quality, visually pleasing image may have different structures from its corresponding low-quality image.
arXiv Detail & Related papers (2022-05-07T07:52:55Z) - Structure-Preserving Image Super-Resolution [94.16949589128296]
Structures matter in single image super-resolution (SISR)
Recent studies have promoted the development of SISR by recovering photo-realistic images.
However, there are still undesired structural distortions in the recovered images.
arXiv Detail & Related papers (2021-09-26T08:48:27Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - Structure-Preserving Super Resolution with Gradient Guidance [87.79271975960764]
Structures matter in single image super resolution (SISR)
Recent studies benefiting from generative adversarial network (GAN) have promoted the development of SISR.
However, there are always undesired structural distortions in the recovered images.
arXiv Detail & Related papers (2020-03-29T17:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.