Structure-Preserving Super Resolution with Gradient Guidance
- URL: http://arxiv.org/abs/2003.13081v1
- Date: Sun, 29 Mar 2020 17:26:58 GMT
- Title: Structure-Preserving Super Resolution with Gradient Guidance
- Authors: Cheng Ma, Yongming Rao, Yean Cheng, Ce Chen, Jiwen Lu, Jie Zhou
- Abstract summary: Structures matter in single image super resolution (SISR)
Recent studies benefiting from generative adversarial network (GAN) have promoted the development of SISR.
However, there are always undesired structural distortions in the recovered images.
- Score: 87.79271975960764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structures matter in single image super resolution (SISR). Recent studies
benefiting from generative adversarial network (GAN) have promoted the
development of SISR by recovering photo-realistic images. However, there are
always undesired structural distortions in the recovered images. In this paper,
we propose a structure-preserving super resolution method to alleviate the
above issue while maintaining the merits of GAN-based methods to generate
perceptual-pleasant details. Specifically, we exploit gradient maps of images
to guide the recovery in two aspects. On the one hand, we restore
high-resolution gradient maps by a gradient branch to provide additional
structure priors for the SR process. On the other hand, we propose a gradient
loss which imposes a second-order restriction on the super-resolved images.
Along with the previous image-space loss functions, the gradient-space
objectives help generative networks concentrate more on geometric structures.
Moreover, our method is model-agnostic, which can be potentially used for
off-the-shelf SR networks. Experimental results show that we achieve the best
PI and LPIPS performance and meanwhile comparable PSNR and SSIM compared with
state-of-the-art perceptual-driven SR methods. Visual results demonstrate our
superiority in restoring structures while generating natural SR images.
Related papers
- Bridging Component Learning with Degradation Modelling for Blind Image
Super-Resolution [69.11604249813304]
We propose a components decomposition and co-optimization network (CDCN) for blind SR.
CDCN decomposes the input LR image into structure and detail components in feature space.
We present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process.
arXiv Detail & Related papers (2022-12-03T14:53:56Z) - Latent Multi-Relation Reasoning for GAN-Prior based Image
Super-Resolution [61.65012981435095]
LAREN is a graph-based disentanglement that constructs a superior disentangled latent space via hierarchical multi-relation reasoning.
We show that LAREN achieves superior large-factor image SR and outperforms the state-of-the-art consistently across multiple benchmarks.
arXiv Detail & Related papers (2022-08-04T19:45:21Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Gradient Variance Loss for Structure-Enhanced Image Super-Resolution [16.971608518924597]
We introduce a structure-enhancing loss function, coined Gradient Variance (GV) loss, and generate textures with perceptual-pleasant details.
Experimental results show that the GV loss can significantly improve both Structure Similarity (SSIM) and peak signal-to-noise ratio (PSNR) performance of existing image super-resolution (SR) deep learning models.
arXiv Detail & Related papers (2022-02-02T12:31:05Z) - Structure-Preserving Image Super-Resolution [94.16949589128296]
Structures matter in single image super-resolution (SISR)
Recent studies have promoted the development of SISR by recovering photo-realistic images.
However, there are still undesired structural distortions in the recovered images.
arXiv Detail & Related papers (2021-09-26T08:48:27Z) - Learning Structral coherence Via Generative Adversarial Network for
Single Image Super-Resolution [13.803141755183827]
Recent generative adversarial network (GAN) based SISR methods have yielded overall realistic SR images.
We introduce the gradient branch into the generator to preserve structural information by restoring high-resolution gradient maps in SR process.
In addition, we utilize a U-net based discriminator to consider both the whole image and the detailed per-pixel authenticity.
arXiv Detail & Related papers (2021-01-25T15:26:23Z) - Blind Quality Assessment for Image Superresolution Using Deep Two-Stream
Convolutional Networks [41.558981828761574]
We propose a no-reference/blind deep neural network-based SR image quality assessor (DeepSRQ)
To learn more discriminative feature representations of various distorted SR images, the proposed DeepSRQ is a two-stream convolutional network.
Experimental results on three publicly available SR image quality databases demonstrate the effectiveness and generalization ability of our proposed DeepSRQ.
arXiv Detail & Related papers (2020-04-13T19:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.