論文の概要: The Devil is in the Details: Self-Supervised Attention for Vehicle
Re-Identification
- arxiv url: http://arxiv.org/abs/2004.06271v3
- Date: Fri, 17 Jul 2020 06:08:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 09:39:44.862467
- Title: The Devil is in the Details: Self-Supervised Attention for Vehicle
Re-Identification
- Title(参考訳): 悪魔は細部にある:車両の再識別に対する自己監督的注意
- Authors: Pirazh Khorramshahi, Neehar Peri, Jun-cheng Chen, Rama Chellappa
- Abstract要約: 車両識別のための自己監督的注意(SAVER)は、車両固有の識別特徴を効果的に学習するための新しいアプローチである。
我々は,SAVERがVeRi, VehicleID, Vehicle-1M, VERI-Wildのデータセットに挑戦する際の最先端性を改善することを示す。
- 参考スコア(独自算出の注目度): 75.3310894042132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the research community has approached the problem of vehicle
re-identification (re-id) with attention-based models, specifically focusing on
regions of a vehicle containing discriminative information. These re-id methods
rely on expensive key-point labels, part annotations, and additional attributes
including vehicle make, model, and color. Given the large number of vehicle
re-id datasets with various levels of annotations, strongly-supervised methods
are unable to scale across different domains. In this paper, we present
Self-supervised Attention for Vehicle Re-identification (SAVER), a novel
approach to effectively learn vehicle-specific discriminative features. Through
extensive experimentation, we show that SAVER improves upon the
state-of-the-art on challenging VeRi, VehicleID, Vehicle-1M and VERI-Wild
datasets.
- Abstract(参考訳): 近年、研究コミュニティは、特に識別情報を含む車両の領域に焦点を当てた注意モデルによる車両再識別(re-id)の問題にアプローチしている。
これらの再idメソッドは高価なキーポイントラベル、部分アノテーション、車両メーク、モデル、カラーなどの追加属性に依存する。
さまざまなレベルのアノテーションを持つ多数の車両再識別子データセットを考えると、強い教師付きメソッドは異なるドメインにわたってスケールできない。
本稿では,車種別識別特徴を効果的に学習する新しい手法として,車両再識別のための自己監督的注意(SAVER)を提案する。
広範な実験を通じて,veri, vehicleid, vehicle-1m および veri-wild データセットに挑戦する上で,saver の最先端性が向上することを示す。
関連論文リスト
- AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - ConMAE: Contour Guided MAE for Unsupervised Vehicle Re-Identification [8.950873153831735]
本研究は、ConMAE(Unsupervised Vehicle Re-Identification)のためのContour Guided Masked Autoencoderを設計する。
Masked Autoencoder (MAE) は自己教師付き学習において優れた性能を発揮していることを考慮し、ConMAE (Contour Guided Masked Autoencoder for Unsupervised Vehicle Re-Identification) を設計した。
論文 参考訳(メタデータ) (2023-02-11T12:10:25Z) - Discriminative-Region Attention and Orthogonal-View Generation Model for
Vehicle Re-Identification [7.5366501970852955]
複数の課題は、視覚に基づく車両のRe-ID手法の適用を妨げる。
提案したDRAモデルでは,識別領域の特徴を自動的に抽出し,類似した車両を識別することができる。
また、OVGモデルでは、入力ビュー機能に基づいてマルチビュー機能を生成し、視点ミスマッチの影響を低減することができる。
論文 参考訳(メタデータ) (2022-04-28T07:46:03Z) - Pluggable Weakly-Supervised Cross-View Learning for Accurate Vehicle
Re-Identification [53.6218051770131]
クロスビューの一貫した機能表現は、正確な車両ReIDの鍵です。
既存のアプローチは、広範な余分な視点アノテーションを使用して、クロスビュー学習を監督する。
Weakly-supervised Cross-View Learning (WCVL) モジュールを車載用として提案する。
論文 参考訳(メタデータ) (2021-03-09T11:51:09Z) - Trends in Vehicle Re-identification Past, Present, and Future: A
Comprehensive Review [2.9093633827040724]
車両リアイドは、複数のカメラネットワークビューでターゲット車両オーバーオーバーラップビューにマッチします。
本稿では,各種車両のre-id技術,手法,データセット,および各種方法論の比較を包括的に記述する。
論文 参考訳(メタデータ) (2021-02-19T05:02:24Z) - AttributeNet: Attribute Enhanced Vehicle Re-Identification [70.89289512099242]
本稿では,属性特徴と属性特徴を共同で抽出するAttributeNet(ANet)を提案する。
ReID-helpful属性特徴を蒸留し、一般的なReID特徴に加えることで、識別能力を高めることができる。
3つの挑戦的なデータセットに対して,我々のフレームワークの有効性を検証する。
論文 参考訳(メタデータ) (2021-02-07T19:51:02Z) - Discriminative Feature Representation with Spatio-temporal Cues for
Vehicle Re-identification [0.0]
車両識別(re-ID)は、様々なカメラが様々な道路網で撮影したギャラリー画像から対象車両を発見し、マッチングすることを目的としている。
車両用リIDのための新しい手がかり(DFR-ST)を用いた特徴表現を提案する。
外観や時間的情報を含むことで、埋め込み空間で堅牢な特徴を構築することができる。
論文 参考訳(メタデータ) (2020-11-13T10:50:21Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
我々は,4つのパブリックな車両データセットを活用することで,大規模車両データセット(VabyNet)を構築することを提案する。
VehicleNetからより堅牢な視覚表現を学習するための、シンプルで効果的な2段階プログレッシブアプローチを設計する。
AICity Challengeのプライベートテストセットにおいて,最先端の精度86.07%mAPを実現した。
論文 参考訳(メタデータ) (2020-04-14T05:06:38Z) - Parsing-based View-aware Embedding Network for Vehicle Re-Identification [138.11983486734576]
本稿では,車載ReIDのビューアウェア機能アライメントと拡張を実現するために,解析に基づくPVEN(View-Aware Embedding Network)を提案する。
3つのデータセットで行った実験により、我々のモデルは最先端の手法よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2020-04-10T13:06:09Z) - Attribute-guided Feature Learning Network for Vehicle Re-identification [13.75036137728257]
自動車再識別(reID)は都市監視ビデオの自動解析において重要な役割を果たしている。
本稿では,属性の豊富なグローバル表現を学習可能な新しいAttribute-Guided Network(AGNet)を提案する。
論文 参考訳(メタデータ) (2020-01-12T06:57:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。