Towards Robust Classification with Image Quality Assessment
- URL: http://arxiv.org/abs/2004.06288v1
- Date: Tue, 14 Apr 2020 03:27:35 GMT
- Title: Towards Robust Classification with Image Quality Assessment
- Authors: Yeli Feng, Yiyu Cai
- Abstract summary: Deep convolutional neural networks (DCNN) are vulnerable to adversarial examples and sensitive to perceptual quality as well as the acquisition condition of images.
In this paper, we investigate the connection between adversarial manipulation and image quality, then propose a protective mechanism.
Our method combines image quality assessment with knowledge distillation to detect input images that would trigger a DCCN to produce egregiously wrong results.
- Score: 0.9213700601337386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown that deep convolutional neural networks (DCNN) are
vulnerable to adversarial examples and sensitive to perceptual quality as well
as the acquisition condition of images. These findings raise a big concern for
the adoption of DCNN-based applications for critical tasks. In the literature,
various defense strategies have been introduced to increase the robustness of
DCNN, including re-training an entire model with benign noise injection,
adversarial examples, or adding extra layers. In this paper, we investigate the
connection between adversarial manipulation and image quality, subsequently
propose a protective mechanism that doesnt require re-training a DCNN. Our
method combines image quality assessment with knowledge distillation to detect
input images that would trigger a DCCN to produce egregiously wrong results.
Using the ResNet model trained on ImageNet as an example, we demonstrate that
the detector can effectively identify poor quality and adversarial images.
Related papers
- Causal Perception Inspired Representation Learning for Trustworthy Image Quality Assessment [2.290956583394892]
We propose to build a trustworthy IQA model via Causal Perception inspired Representation Learning (CPRL)
CPRL serves as the causation of the subjective quality label, which is invariant to the imperceptible adversarial perturbations.
Experiments on four benchmark databases show that the proposed CPRL method outperforms many state-of-the-art adversarial defense methods.
arXiv Detail & Related papers (2024-04-30T13:55:30Z) - Defending Spiking Neural Networks against Adversarial Attacks through Image Purification [20.492531851480784]
Spiking Neural Networks (SNNs) aim to bridge the gap between neuroscience and machine learning.
SNNs are vulnerable to adversarial attacks like convolutional neural networks.
We propose a biologically inspired methodology to enhance the robustness of SNNs.
arXiv Detail & Related papers (2024-04-26T00:57:06Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - (ASNA) An Attention-based Siamese-Difference Neural Network with
Surrogate Ranking Loss function for Perceptual Image Quality Assessment [0.0]
Deep convolutional neural networks (DCNN) that leverage the adversarial training framework for image restoration and enhancement have significantly improved the processed images' sharpness.
It is necessary to develop a quantitative metric to reflect their performances, which is well-aligned with the perceived quality of an image.
This paper has proposed a convolutional neural network using an extension architecture of the traditional Siamese network.
arXiv Detail & Related papers (2021-05-06T09:04:21Z) - DeepCert: Verification of Contextually Relevant Robustness for Neural
Network Image Classifiers [16.893762648621266]
We introduce DeepCert, a tool-supported method for verifying the robustness of deep neural network (DNN) image classifiers to contextually relevant perturbations.
arXiv Detail & Related papers (2021-03-02T10:41:16Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
We present a deep interleaved network (DIN) that learns how information at different states should be combined for high-quality (HQ) images reconstruction.
In this paper, we propose asymmetric co-attention (AsyCA) which is attached at each interleaved node to model the feature dependencies.
Our presented DIN can be trained end-to-end and applied to various image restoration tasks.
arXiv Detail & Related papers (2020-10-29T15:32:00Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
Deep neural networks (DNNs) are vulnerable to adversarial examples and other data perturbations.
GraN is a time- and parameter-efficient method that is easily adaptable to any DNN.
GraN achieves state-of-the-art performance on numerous problem set-ups.
arXiv Detail & Related papers (2020-04-20T10:09:27Z) - Adversarial Attack on Deep Product Quantization Network for Image
Retrieval [74.85736968193879]
Deep product quantization network (DPQN) has recently received much attention in fast image retrieval tasks.
Recent studies show that deep neural networks (DNNs) are vulnerable to input with small and maliciously designed perturbations.
We propose product quantization adversarial generation (PQ-AG) to generate adversarial examples for product quantization based retrieval systems.
arXiv Detail & Related papers (2020-02-26T09:25:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.