SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models
- URL: http://arxiv.org/abs/2503.12484v1
- Date: Sun, 16 Mar 2025 12:32:11 GMT
- Title: SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models
- Authors: Jiakang Chen, Selim F. Yilmaz, Di You, Pier Luigi Dragotti, Deniz Gündüz,
- Abstract summary: Joint source-channel coding systems (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission.<n>Existing methods focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality.<n>We propose SING, a novel framework that formulates the recovery of high-quality images from corrupted reconstructions as an inverse problem.
- Score: 52.40011613324083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Joint source-channel coding systems based on deep neural networks (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission. Existing methods primarily focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality. This can lead to severe perceptual degradation when transmitting images under extreme conditions, such as low bandwidth compression ratios (BCRs) and low signal-to-noise ratios (SNRs). In this work, we propose SING, a novel two-stage JSCC framework that formulates the recovery of high-quality source images from corrupted reconstructions as an inverse problem. Depending on the availability of information about the DeepJSCC encoder/decoder and the channel at the receiver, SING can either approximate the stochastic degradation as a linear transformation, or leverage invertible neural networks (INNs) for precise modeling. Both approaches enable the seamless integration of diffusion models into the reconstruction process, enhancing perceptual quality. Experimental results demonstrate that SING outperforms DeepJSCC and other approaches, delivering superior perceptual quality even under extremely challenging conditions, including scenarios with significant distribution mismatches between the training and test data.
Related papers
- Diffusion-Aided Joint Source Channel Coding For High Realism Wireless Image Transmission [24.372996233209854]
DiffJSCC is a novel framework that produces high-realism images via the conditional diffusion denoising process.
It can achieve highly realistic reconstructions for 768x512 pixel Kodak images with only 3072 symbols.
arXiv Detail & Related papers (2024-04-27T00:12:13Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment [45.62136459502005]
We propose a network to perform full reference (FR) and no reference (NR) IQA.
We first employ an encoder to extract multi-level features from input images.
A Hierarchical Attention (HA) module is proposed as a universal adapter for both FR and NR inputs.
A Semantic Distortion Aware (SDA) module is proposed to examine feature correlations between shallow and deep layers of the encoder.
arXiv Detail & Related papers (2023-10-14T11:03:04Z) - CommIN: Semantic Image Communications as an Inverse Problem with
INN-Guided Diffusion Models [20.005671042281246]
We propose CommIN, which views the recovery of high-quality source images from degraded reconstructions as an inverse problem.
We show that our CommIN significantly improves the perceptual quality compared to DeepJSCC under extreme conditions.
arXiv Detail & Related papers (2023-10-02T12:06:58Z) - High Perceptual Quality Wireless Image Delivery with Denoising Diffusion
Models [10.763194436114194]
We consider the image transmission problem over a noisy wireless channel via deep learning-based joint source-channel coding (DeepJSCC)
We introduce a novel scheme that utilizes the range-null space decomposition of the target image.
We demonstrate significant improvements in distortion and perceptual quality of reconstructed images compared to standard DeepJSCC and the state-of-the-art generative learning-based method.
arXiv Detail & Related papers (2023-09-27T16:30:59Z) - Generative Joint Source-Channel Coding for Semantic Image Transmission [29.738666406095074]
Joint source-channel coding (JSCC) schemes using deep neural networks (DNNs) provide promising results in wireless image transmission.
We propose two novel J SCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission.
arXiv Detail & Related papers (2022-11-24T19:14:27Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Adaptive Information Bottleneck Guided Joint Source and Channel Coding
for Image Transmission [132.72277692192878]
An adaptive information bottleneck (IB) guided joint source and channel coding (AIB-JSCC) is proposed for image transmission.
The goal of AIB-JSCC is to reduce the transmission rate while improving the image reconstruction quality.
Experimental results show that AIB-JSCC can significantly reduce the required amount of transmitted data and improve the reconstruction quality.
arXiv Detail & Related papers (2022-03-12T17:44:02Z) - Bandwidth-Agile Image Transmission with Deep Joint Source-Channel Coding [7.081604594416339]
We consider the scenario in which images are transmitted progressively in layers over time or frequency.
DeepJSCC-$l$ is an innovative solution that uses convolutional autoencoders.
DeepJSCC-$l$ has comparable performance with state of the art digital progressive transmission schemes in the challenging low signal-to-noise ratio (SNR) and small bandwidth regimes.
arXiv Detail & Related papers (2020-09-26T00:11:50Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Attention Based Real Image Restoration [48.933507352496726]
Deep convolutional neural networks perform better on images containing synthetic degradations.
This paper proposes a novel single-stage blind real image restoration network (R$2$Net)
arXiv Detail & Related papers (2020-04-26T04:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.