VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification
- URL: http://arxiv.org/abs/2004.06305v2
- Date: Fri, 29 Apr 2022 16:26:49 GMT
- Title: VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification
- Authors: Zhedong Zheng, Tao Ruan, Yunchao Wei, Yi Yang, Tao Mei
- Abstract summary: We propose to build a large-scale vehicle dataset (called VehicleNet) by harnessing four public vehicle datasets.
We design a simple yet effective two-stage progressive approach to learning more robust visual representation from VehicleNet.
We achieve the state-of-art accuracy of 86.07% mAP on the private test set of AICity Challenge.
- Score: 116.1587709521173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One fundamental challenge of vehicle re-identification (re-id) is to learn
robust and discriminative visual representation, given the significant
intra-class vehicle variations across different camera views. As the existing
vehicle datasets are limited in terms of training images and viewpoints, we
propose to build a unique large-scale vehicle dataset (called VehicleNet) by
harnessing four public vehicle datasets, and design a simple yet effective
two-stage progressive approach to learning more robust visual representation
from VehicleNet. The first stage of our approach is to learn the generic
representation for all domains (i.e., source vehicle datasets) by training with
the conventional classification loss. This stage relaxes the full alignment
between the training and testing domains, as it is agnostic to the target
vehicle domain. The second stage is to fine-tune the trained model purely based
on the target vehicle set, by minimizing the distribution discrepancy between
our VehicleNet and any target domain. We discuss our proposed multi-source
dataset VehicleNet and evaluate the effectiveness of the two-stage progressive
representation learning through extensive experiments. We achieve the
state-of-art accuracy of 86.07% mAP on the private test set of AICity
Challenge, and competitive results on two other public vehicle re-id datasets,
i.e., VeRi-776 and VehicleID. We hope this new VehicleNet dataset and the
learned robust representations can pave the way for vehicle re-id in the
real-world environments.
Related papers
- VehicleGAN: Pair-flexible Pose Guided Image Synthesis for Vehicle Re-identification [27.075761782915496]
This paper proposes to synthesize a large number of vehicle images in the target pose.
Considering the paired data of the same vehicles in different traffic surveillance cameras might be not available in the real world, we propose VehicleGAN.
Because of the feature distribution difference between real and synthetic data, we propose a new Joint Metric Learning (JML) via effective feature-level fusion.
arXiv Detail & Related papers (2023-11-27T19:34:04Z) - Discriminative-Region Attention and Orthogonal-View Generation Model for
Vehicle Re-Identification [7.5366501970852955]
Multiple challenges hamper the applications of vision-based vehicle Re-ID methods.
The proposed DRA model can automatically extract the discriminative region features, which can distinguish similar vehicles.
And the OVG model can generate multi-view features based on the input view features to reduce the impact of viewpoint mismatches.
arXiv Detail & Related papers (2022-04-28T07:46:03Z) - Bounding Box-Free Instance Segmentation Using Semi-Supervised Learning
for Generating a City-Scale Vehicle Dataset [0.0]
Vehicle classification is a hot computer vision topic, with studies ranging from ground-view up to top-view imagery.
In this paper, we propose a novel semi-supervised iterative learning approach using GIS software.
The results show better pixel-wise metrics when compared to the Mask-RCNN (82% against 67% in IoU)
arXiv Detail & Related papers (2021-11-23T19:42:12Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
7DoF prediction of vehicles at an intersection is an important task for assessing potential conflicts between road users.
We develop an approach using a weakly supervised method of fine tuning 3D object detectors for traffic observation cameras.
Our method achieves vehicle 7DoF pose prediction accuracy on our dataset comparable to the top performing monocular 3D object detectors on autonomous vehicle datasets.
arXiv Detail & Related papers (2021-10-21T08:26:48Z) - Connecting Language and Vision for Natural Language-Based Vehicle
Retrieval [77.88818029640977]
In this paper, we apply one new modality, i.e., the language description, to search the vehicle of interest.
To connect language and vision, we propose to jointly train the state-of-the-art vision models with the transformer-based language model.
Our proposed method has achieved the 1st place on the 5th AI City Challenge, yielding competitive performance 18.69% MRR accuracy.
arXiv Detail & Related papers (2021-05-31T11:42:03Z) - Pluggable Weakly-Supervised Cross-View Learning for Accurate Vehicle
Re-Identification [53.6218051770131]
Cross-view consistent feature representation is key for accurate vehicle ReID.
Existing approaches resort to supervised cross-view learning using extensive extra viewpoints annotations.
We present a pluggable Weakly-supervised Cross-View Learning (WCVL) module for vehicle ReID.
arXiv Detail & Related papers (2021-03-09T11:51:09Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - The Devil is in the Details: Self-Supervised Attention for Vehicle
Re-Identification [75.3310894042132]
Self-supervised Attention for Vehicle Re-identification (SAVER) is a novel approach to effectively learn vehicle-specific discriminative features.
We show that SAVER improves upon the state-of-the-art on challenging VeRi, VehicleID, Vehicle-1M and VERI-Wild datasets.
arXiv Detail & Related papers (2020-04-14T02:24:47Z) - Parsing-based View-aware Embedding Network for Vehicle Re-Identification [138.11983486734576]
We propose a parsing-based view-aware embedding network (PVEN) to achieve the view-aware feature alignment and enhancement for vehicle ReID.
The experiments conducted on three datasets show that our model outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-04-10T13:06:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.