Pluggable Weakly-Supervised Cross-View Learning for Accurate Vehicle
Re-Identification
- URL: http://arxiv.org/abs/2103.05376v1
- Date: Tue, 9 Mar 2021 11:51:09 GMT
- Title: Pluggable Weakly-Supervised Cross-View Learning for Accurate Vehicle
Re-Identification
- Authors: Lu Yang, Hongbang Liu, Jinghao Zhou, Lingqiao Liu, Lei Zhang, Peng
Wang and Yanning Zhang
- Abstract summary: Cross-view consistent feature representation is key for accurate vehicle ReID.
Existing approaches resort to supervised cross-view learning using extensive extra viewpoints annotations.
We present a pluggable Weakly-supervised Cross-View Learning (WCVL) module for vehicle ReID.
- Score: 53.6218051770131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning cross-view consistent feature representation is the key for accurate
vehicle Re-identification (ReID), since the visual appearance of vehicles
changes significantly under different viewpoints. To this end, most existing
approaches resort to the supervised cross-view learning using extensive extra
viewpoints annotations, which however, is difficult to deploy in real
applications due to the expensive labelling cost and the continous viewpoint
variation that makes it hard to define discrete viewpoint labels. In this
study, we present a pluggable Weakly-supervised Cross-View Learning (WCVL)
module for vehicle ReID. Through hallucinating the cross-view samples as the
hardest positive counterparts in feature domain, we can learn the consistent
feature representation via minimizing the cross-view feature distance based on
vehicle IDs only without using any viewpoint annotation. More importantly, the
proposed method can be seamlessly plugged into most existing vehicle ReID
baselines for cross-view learning without re-training the baselines. To
demonstrate its efficacy, we plug the proposed method into a bunch of
off-the-shelf baselines and obtain significant performance improvement on four
public benchmark datasets, i.e., VeRi-776, VehicleID, VRIC and VRAI.
Related papers
- Multi-query Vehicle Re-identification: Viewpoint-conditioned Network,
Unified Dataset and New Metric [30.344288906037345]
We propose a more realistic and easily accessible task, called multi-query vehicle Re-ID.
We design a novel viewpoint-conditioned network (VCNet), which adaptively combines the complementary information from different vehicle viewpoints.
Second, we create a unified benchmark dataset, taken by 6142 cameras from a real-life transportation surveillance system.
Third, we design a new evaluation metric, called mean cross-scene precision (mCSP), which measures the ability of cross-scene recognition.
arXiv Detail & Related papers (2023-05-25T06:22:03Z) - Rethinking Range View Representation for LiDAR Segmentation [66.73116059734788]
"Many-to-one" mapping, semantic incoherence, and shape deformation are possible impediments against effective learning from range view projections.
We present RangeFormer, a full-cycle framework comprising novel designs across network architecture, data augmentation, and post-processing.
We show that, for the first time, a range view method is able to surpass the point, voxel, and multi-view fusion counterparts in the competing LiDAR semantic and panoptic segmentation benchmarks.
arXiv Detail & Related papers (2023-03-09T16:13:27Z) - ConMAE: Contour Guided MAE for Unsupervised Vehicle Re-Identification [8.950873153831735]
This work designs a Contour Guided Masked Autoencoder for Unsupervised Vehicle Re-Identification (ConMAE)
Considering that Masked Autoencoder (MAE) has shown excellent performance in self-supervised learning, this work designs a Contour Guided Masked Autoencoder for Unsupervised Vehicle Re-Identification (ConMAE)
arXiv Detail & Related papers (2023-02-11T12:10:25Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Discriminative-Region Attention and Orthogonal-View Generation Model for
Vehicle Re-Identification [7.5366501970852955]
Multiple challenges hamper the applications of vision-based vehicle Re-ID methods.
The proposed DRA model can automatically extract the discriminative region features, which can distinguish similar vehicles.
And the OVG model can generate multi-view features based on the input view features to reduce the impact of viewpoint mismatches.
arXiv Detail & Related papers (2022-04-28T07:46:03Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
We propose to build a large-scale vehicle dataset (called VehicleNet) by harnessing four public vehicle datasets.
We design a simple yet effective two-stage progressive approach to learning more robust visual representation from VehicleNet.
We achieve the state-of-art accuracy of 86.07% mAP on the private test set of AICity Challenge.
arXiv Detail & Related papers (2020-04-14T05:06:38Z) - The Devil is in the Details: Self-Supervised Attention for Vehicle
Re-Identification [75.3310894042132]
Self-supervised Attention for Vehicle Re-identification (SAVER) is a novel approach to effectively learn vehicle-specific discriminative features.
We show that SAVER improves upon the state-of-the-art on challenging VeRi, VehicleID, Vehicle-1M and VERI-Wild datasets.
arXiv Detail & Related papers (2020-04-14T02:24:47Z) - Parsing-based View-aware Embedding Network for Vehicle Re-Identification [138.11983486734576]
We propose a parsing-based view-aware embedding network (PVEN) to achieve the view-aware feature alignment and enhancement for vehicle ReID.
The experiments conducted on three datasets show that our model outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-04-10T13:06:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.