論文の概要: Jointly Modeling Aspect and Sentiment with Dynamic Heterogeneous Graph
Neural Networks
- arxiv url: http://arxiv.org/abs/2004.06427v1
- Date: Tue, 14 Apr 2020 11:27:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 08:57:40.066640
- Title: Jointly Modeling Aspect and Sentiment with Dynamic Heterogeneous Graph
Neural Networks
- Title(参考訳): 動的不均一グラフニューラルネットワークによるアスペクトと感情の協調モデリング
- Authors: Shu Liu, Wei Li, Yunfang Wu, Qi Su, Xu Sun
- Abstract要約: 対象に基づく感性分析は、意見の側面(視点抽出)と感情の極性(感情検出)を検出することを目的としている。
以前のパイプラインと統合されたメソッドはどちらも、これらの2つの目的の間の自然的接続を正確にモデル化することができない。
本稿では,2つの目的を明示的な方法で共同でモデル化する新しい動的不均一グラフを提案する。
- 参考スコア(独自算出の注目度): 27.59070337052869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Target-Based Sentiment Analysis aims to detect the opinion aspects (aspect
extraction) and the sentiment polarities (sentiment detection) towards them.
Both the previous pipeline and integrated methods fail to precisely model the
innate connection between these two objectives. In this paper, we propose a
novel dynamic heterogeneous graph to jointly model the two objectives in an
explicit way. Both the ordinary words and sentiment labels are treated as nodes
in the heterogeneous graph, so that the aspect words can interact with the
sentiment information. The graph is initialized with multiple types of
dependencies, and dynamically modified during real-time prediction. Experiments
on the benchmark datasets show that our model outperforms the state-of-the-art
models. Further analysis demonstrates that our model obtains significant
performance gain on the challenging instances under multiple-opinion aspects
and no-opinion aspect situations.
- Abstract(参考訳): ターゲットベースの感情分析は、意見の側面(検査抽出)と感情の極性(強調検出)を検出することを目的としている。
以前のパイプラインと統合メソッドはどちらも、これらの2つの目的間の生来の接続を正確にモデル化することができない。
本稿では,2つの目的を明示的な方法で共同でモデル化する,新しい動的異種グラフを提案する。
通常の単語と感情ラベルの両方を異種グラフのノードとして扱い、アスペクトワードが感情情報と相互作用できるようにします。
グラフは複数の依存型で初期化され、リアルタイム予測中に動的に修正される。
ベンチマークデータセットの実験では、我々のモデルは最先端のモデルよりも優れています。
さらに分析した結果,マルチオピニオンと非オピニオンの状況下での課題インスタンスの性能向上が確認できた。
関連論文リスト
- Retrieval Augmented Generation for Dynamic Graph Modeling [15.09162213134372]
動的グラフモデリングは、様々なアプリケーションで進化するパターンを分析するのに不可欠である。
既存のアプローチは、しばしばグラフニューラルネットワークと時間モジュールを統合するか、生成シーケンスタスクとして動的グラフモデリングを再定義する。
本稿では,動的グラフモデリング(RAG4DyG)フレームワークについて紹介する。
論文 参考訳(メタデータ) (2024-08-26T09:23:35Z) - Entropy Neural Estimation for Graph Contrastive Learning [9.032721248598088]
グラフ上のコントラスト学習は、ノードの区別可能な高レベル表現を抽出することを目的としている。
本稿では,データセットのビュー間のペアワイズ表現を対比する,単純かつ効果的なサブセットサンプリング戦略を提案する。
7つのグラフベンチマークで広範な実験を行い、提案手法は競合性能を実現する。
論文 参考訳(メタデータ) (2023-07-26T03:55:08Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - EXPERT: Public Benchmarks for Dynamic Heterogeneous Academic Graphs [5.4744970832051445]
グラフ予測タスクのために開発されたモデルの有効性を検証するために,大規模で動的に異種な学術グラフを提案する。
我々の新しいデータセットは、人工知能(AI)と核拡散(NN)の2つのコミュニティにわたる科学出版物から抽出された文脈情報と内容情報の両方をカバーしている。
論文 参考訳(メタデータ) (2022-04-14T19:43:34Z) - Neural Belief Propagation for Scene Graph Generation [31.9682610869767]
本稿では,結果のシーングラフを生成するための新しいニューラル信念伝搬法を提案する。
平均場近似よりも構造的Bethe近似を用いて、関連する限界を推定する。
様々な人気のあるシーングラフ生成ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-12-10T18:30:27Z) - From Canonical Correlation Analysis to Self-supervised Graph Neural
Networks [99.44881722969046]
本稿では,グラフデータを用いた自己教師付き表現学習のための概念的単純かつ効果的なモデルを提案する。
古典的カノニカル相関解析にインスパイアされた,革新的な特徴レベルの目的を最適化する。
提案手法は、7つの公開グラフデータセット上で競合的に動作する。
論文 参考訳(メタデータ) (2021-06-23T15:55:47Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
リレーショナル・テンポラル関係を明示的にモデル化するメッセージパッシンググラフニューラルネットワークを提案する。
本手法は,シーン内の関連エンティティ間の関係をより効果的にモデル化できることを示す。
論文 参考訳(メタデータ) (2021-03-29T14:37:35Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
人-物間相互作用(HOI)検出の課題に対処する。
既存の方法は、人間と物体の対の相互作用を独立に認識するか、複雑な外観に基づく共同推論を行う。
本稿では,抽象的空間意味表現を活用して,各対象対を記述し,二重関係グラフを用いてシーンの文脈情報を集約する。
論文 参考訳(メタデータ) (2020-08-26T17:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。