Mining Coronavirus (COVID-19) Posts in Social Media
- URL: http://arxiv.org/abs/2004.06778v1
- Date: Sat, 28 Mar 2020 23:38:50 GMT
- Title: Mining Coronavirus (COVID-19) Posts in Social Media
- Authors: Negin Karisani, Payam Karisani
- Abstract summary: World Health Organization (WHO) characterized the novel coronavirus (COVID-19) as a global pandemic on March 11th, 2020.
In this article we report the preliminary results of our study on automatically detecting the positive reports of COVID-19 from social media user postings using state-of-the-art machine learning models.
- Score: 3.04585143845864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: World Health Organization (WHO) characterized the novel coronavirus
(COVID-19) as a global pandemic on March 11th, 2020. Before this and in late
January, more specifically on January 27th, while the majority of the infection
cases were still reported in China and a few cruise ships, we began crawling
social media user postings using the Twitter search API. Our goal was to
leverage machine learning and linguistic tools to better understand the impact
of the outbreak in China. Unlike our initial expectation to monitor a local
outbreak, COVID-19 rapidly spread across the globe. In this short article we
report the preliminary results of our study on automatically detecting the
positive reports of COVID-19 from social media user postings using
state-of-the-art machine learning models.
Related papers
- "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - Rapid COVID-19 Risk Screening by Eye-region Manifestations [64.6260390977642]
There are more and more ocular manifestations that have been reported in the COVID-19 patients as growing clinical evidence.
We propose a new fast screening method of analyzing the eye-region images, captured by common CCD and CMOS cameras.
Our model for COVID-19 rapid prescreening have the merits of the lower cost, fully self-performed, non-invasive, importantly real-time, and thus enables the continuous health surveillance.
arXiv Detail & Related papers (2021-06-12T01:56:10Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - Twitter discussions and emotions about COVID-19 pandemic: a machine
learning approach [0.0]
We analyze 4 million Twitter messages related to the COVID-19 pandemic using a list of 25 hashtags such as "coronavirus," "COVID-19," "quarantine" from March 1 to April 21 in 2020.
We identify 13 discussion topics and categorize them into five different themes, such as "public health measures to slow the spread of COVID-19," "social stigma associated with COVID-19," "coronavirus news cases and deaths," "COVID-19 in the United States," and "coronavirus cases in the rest of the world"
arXiv Detail & Related papers (2020-05-26T16:10:02Z) - Public discourse and sentiment during the COVID-19 pandemic: using
Latent Dirichlet Allocation for topic modeling on Twitter [10.857375706178622]
The study aims to understand Twitter users' discourse and psychological reactions to COVID-19.
We use machine learning techniques to analyze about 1.9 million Tweets related to coronavirus collected from January 23 to March 7, 2020.
Results do not reveal treatments and symptoms related messages as prevalent topics on Twitter.
arXiv Detail & Related papers (2020-05-18T15:50:38Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
Pandemic of the novel Coronavirus Disease 2019 (COVID-19) has presented governments with ultimate challenges.
In the United States, the country with the highest confirmed COVID-19 infection cases, a nationwide social distancing protocol has been implemented by the President.
This paper aims to discover the social implications of this unprecedented disruption in our interactive society by mining people's opinions on social media.
arXiv Detail & Related papers (2020-04-21T13:02:38Z) - Large Arabic Twitter Dataset on COVID-19 [0.7734726150561088]
coronavirus disease (COVID-19), emerged late December 2019 in China, is now rapidly spreading across the globe.
The number of global confirmed cases has passed two millions and half with over 180,000 fatalities.
This work describes the first Arabic tweets dataset on COVID-19 that we have been collecting since January 1st, 2020.
arXiv Detail & Related papers (2020-04-09T01:07:12Z) - A machine learning methodology for real-time forecasting of the
2019-2020 COVID-19 outbreak using Internet searches, news alerts, and
estimates from mechanistic models [53.900779250589814]
Our method is able to produce stable and accurate forecasts 2 days ahead of current time.
Our model's predictive power outperforms a collection of baseline models in 27 out of the 32 Chinese provinces.
arXiv Detail & Related papers (2020-04-08T14:39:32Z) - The Second Worldwide Wave of Interest in Coronavirus since the COVID-19
Outbreaks in South Korea, Italy and Iran: A Google Trends Study [0.0]
This study explores the potential use of Google Trends (GT) to monitor worldwide interest in this COVID-19 epidemic.
GT was chosen as a source of reverse engineering data, given the interest in the topic.
Highest worldwide peak in the first wave of demand for information was on 31 January 2020.
arXiv Detail & Related papers (2020-03-24T17:33:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.