Large Arabic Twitter Dataset on COVID-19
- URL: http://arxiv.org/abs/2004.04315v2
- Date: Wed, 22 Apr 2020 22:38:15 GMT
- Title: Large Arabic Twitter Dataset on COVID-19
- Authors: Sarah Alqurashi, Ahmad Alhindi, Eisa Alanazi
- Abstract summary: coronavirus disease (COVID-19), emerged late December 2019 in China, is now rapidly spreading across the globe.
The number of global confirmed cases has passed two millions and half with over 180,000 fatalities.
This work describes the first Arabic tweets dataset on COVID-19 that we have been collecting since January 1st, 2020.
- Score: 0.7734726150561088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 2019 coronavirus disease (COVID-19), emerged late December 2019 in China,
is now rapidly spreading across the globe. At the time of writing this paper,
the number of global confirmed cases has passed two millions and half with over
180,000 fatalities. Many countries have enforced strict social distancing
policies to contain the spread of the virus. This have changed the daily life
of tens of millions of people, and urged people to turn their discussions
online, e.g., via online social media sites like Twitter. In this work, we
describe the first Arabic tweets dataset on COVID-19 that we have been
collecting since January 1st, 2020. The dataset would help researchers and
policy makers in studying different societal issues related to the pandemic.
Many other tasks related to behavioral change, information sharing,
misinformation and rumors spreading can also be analyzed.
Related papers
- "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
We make the first attempt to detect COVID-19 misinformation in a low-resource language (Chinese) only using the fact-checked news in a high-resource language (English)
We propose a deep learning framework named CrossFake to jointly encode the cross-lingual news body texts and capture the news content.
Empirical results on our dataset demonstrate the effectiveness of CrossFake under the cross-lingual setting.
arXiv Detail & Related papers (2021-10-13T04:44:02Z) - ArCorona: Analyzing Arabic Tweets in the Early Days of Coronavirus
(COVID-19) Pandemic [3.057212947792573]
We present the largest manually annotated dataset of Arabic tweets related to COVID-19.
We describe annotation guidelines, analyze our dataset and build effective machine learning and transformer based models for classification.
arXiv Detail & Related papers (2020-12-02T19:05:25Z) - Global Sentiment Analysis Of COVID-19 Tweets Over Time [0.0]
The social networking site, Twitter showed an unprecedented increase in tweets related to the novel Coronavirus in a very short span of time.
This paper presents the global sentiment analysis of tweets related to Coronavirus and how the sentiment of people in different countries has changed over time.
arXiv Detail & Related papers (2020-10-27T12:10:10Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
COVID-19 has sparked racism and hate on social media targeted towards Asian communities.
We study the evolution and spread of anti-Asian hate speech through the lens of Twitter.
We create COVID-HATE, the largest dataset of anti-Asian hate and counterspeech spanning 14 months.
arXiv Detail & Related papers (2020-05-25T21:58:09Z) - GeoCoV19: A Dataset of Hundreds of Millions of Multilingual COVID-19
Tweets with Location Information [4.541389211258011]
We present GeoCoV19, a large-scale Twitter dataset containing more than 524 million multilingual tweets posted over a period of 90 days since February 1, 2020.
We postulate that this large-scale, multilingual, geolocated social media data can empower the research communities to evaluate how societies are collectively coping with this unprecedented global crisis.
arXiv Detail & Related papers (2020-05-22T13:30:42Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
An estimated 2.95 billion people in 2019 used social media worldwide.
The widespread of the Coronavirus COVID-19 resulted with a tsunami of social media.
This paper presents a large-scale study based on data mined from Twitter.
arXiv Detail & Related papers (2020-05-18T15:53:13Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
Pandemic of the novel Coronavirus Disease 2019 (COVID-19) has presented governments with ultimate challenges.
In the United States, the country with the highest confirmed COVID-19 infection cases, a nationwide social distancing protocol has been implemented by the President.
This paper aims to discover the social implications of this unprecedented disruption in our interactive society by mining people's opinions on social media.
arXiv Detail & Related papers (2020-04-21T13:02:38Z) - Mining Coronavirus (COVID-19) Posts in Social Media [3.04585143845864]
World Health Organization (WHO) characterized the novel coronavirus (COVID-19) as a global pandemic on March 11th, 2020.
In this article we report the preliminary results of our study on automatically detecting the positive reports of COVID-19 from social media user postings using state-of-the-art machine learning models.
arXiv Detail & Related papers (2020-03-28T23:38:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.