A Human Evaluation of AMR-to-English Generation Systems
- URL: http://arxiv.org/abs/2004.06814v2
- Date: Tue, 1 Dec 2020 17:18:27 GMT
- Title: A Human Evaluation of AMR-to-English Generation Systems
- Authors: Emma Manning, Shira Wein, Nathan Schneider
- Abstract summary: We present the results of a new human evaluation which collects fluency and adequacy scores, as well as categorization of error types.
We discuss the relative quality of these systems and how our results compare to those of automatic metrics.
- Score: 13.10463139842285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most current state-of-the art systems for generating English text from
Abstract Meaning Representation (AMR) have been evaluated only using automated
metrics, such as BLEU, which are known to be problematic for natural language
generation. In this work, we present the results of a new human evaluation
which collects fluency and adequacy scores, as well as categorization of error
types, for several recent AMR generation systems. We discuss the relative
quality of these systems and how our results compare to those of automatic
metrics, finding that while the metrics are mostly successful in ranking
systems overall, collecting human judgments allows for more nuanced
comparisons. We also analyze common errors made by these systems.
Related papers
- BLEURT Has Universal Translations: An Analysis of Automatic Metrics by
Minimum Risk Training [64.37683359609308]
In this study, we analyze various mainstream and cutting-edge automatic metrics from the perspective of their guidance for training machine translation systems.
We find that certain metrics exhibit robustness defects, such as the presence of universal adversarial translations in BLEURT and BARTScore.
In-depth analysis suggests two main causes of these robustness deficits: distribution biases in the training datasets, and the tendency of the metric paradigm.
arXiv Detail & Related papers (2023-07-06T16:59:30Z) - Correction of Errors in Preference Ratings from Automated Metrics for
Text Generation [4.661309379738428]
We propose a statistical model of Text Generation evaluation that accounts for the error-proneness of automated metrics.
We show that our model enables an efficient combination of human and automated ratings to remedy the error-proneness of the automated metrics.
arXiv Detail & Related papers (2023-06-06T17:09:29Z) - The Glass Ceiling of Automatic Evaluation in Natural Language Generation [60.59732704936083]
We take a step back and analyze recent progress by comparing the body of existing automatic metrics and human metrics.
Our extensive statistical analysis reveals surprising findings: automatic metrics -- old and new -- are much more similar to each other than to humans.
arXiv Detail & Related papers (2022-08-31T01:13:46Z) - Re-Examining System-Level Correlations of Automatic Summarization
Evaluation Metrics [64.81682222169113]
How reliably an automatic summarization evaluation metric replicates human judgments of summary quality is quantified by system-level correlations.
We identify two ways in which the definition of the system-level correlation is inconsistent with how metrics are used to evaluate systems in practice.
arXiv Detail & Related papers (2022-04-21T15:52:14Z) - To Ship or Not to Ship: An Extensive Evaluation of Automatic Metrics for
Machine Translation [5.972205906525993]
We investigate which metrics have the highest accuracy to make system-level quality rankings for pairs of systems.
We show that the sole use of BLEU negatively affected the past development of improved models.
arXiv Detail & Related papers (2021-07-22T17:22:22Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
A few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation.
This is partly due to ease of use, and partly because researchers expect to see them and know how to interpret them.
In this paper, we urge the community for more careful consideration of how they automatically evaluate their models.
arXiv Detail & Related papers (2020-10-26T13:57:20Z) - Tangled up in BLEU: Reevaluating the Evaluation of Automatic Machine
Translation Evaluation Metrics [64.88815792555451]
We show that current methods for judging metrics are highly sensitive to the translations used for assessment.
We develop a method for thresholding performance improvement under an automatic metric against human judgements.
arXiv Detail & Related papers (2020-06-11T09:12:53Z) - BLEU might be Guilty but References are not Innocent [34.817010352734]
We study different methods to collect references and compare their value in automated evaluation.
Motivated by the finding that typical references exhibit poor diversity, concentrating around translationese language, we develop a paraphrasing task.
Our method yields higher correlation with human judgment not only for the submissions of WMT 2019 English to German, but also for Back-translation and APE augmented MT output.
arXiv Detail & Related papers (2020-04-13T16:49:09Z) - PONE: A Novel Automatic Evaluation Metric for Open-Domain Generative
Dialogue Systems [48.99561874529323]
There are three kinds of automatic methods to evaluate the open-domain generative dialogue systems.
Due to the lack of systematic comparison, it is not clear which kind of metrics are more effective.
We propose a novel and feasible learning-based metric that can significantly improve the correlation with human judgments.
arXiv Detail & Related papers (2020-04-06T04:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.