BLEURT Has Universal Translations: An Analysis of Automatic Metrics by
Minimum Risk Training
- URL: http://arxiv.org/abs/2307.03131v2
- Date: Mon, 10 Jul 2023 15:59:49 GMT
- Title: BLEURT Has Universal Translations: An Analysis of Automatic Metrics by
Minimum Risk Training
- Authors: Yiming Yan, Tao Wang, Chengqi Zhao, Shujian Huang, Jiajun Chen,
Mingxuan Wang
- Abstract summary: In this study, we analyze various mainstream and cutting-edge automatic metrics from the perspective of their guidance for training machine translation systems.
We find that certain metrics exhibit robustness defects, such as the presence of universal adversarial translations in BLEURT and BARTScore.
In-depth analysis suggests two main causes of these robustness deficits: distribution biases in the training datasets, and the tendency of the metric paradigm.
- Score: 64.37683359609308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic metrics play a crucial role in machine translation. Despite the
widespread use of n-gram-based metrics, there has been a recent surge in the
development of pre-trained model-based metrics that focus on measuring sentence
semantics. However, these neural metrics, while achieving higher correlations
with human evaluations, are often considered to be black boxes with potential
biases that are difficult to detect. In this study, we systematically analyze
and compare various mainstream and cutting-edge automatic metrics from the
perspective of their guidance for training machine translation systems. Through
Minimum Risk Training (MRT), we find that certain metrics exhibit robustness
defects, such as the presence of universal adversarial translations in BLEURT
and BARTScore. In-depth analysis suggests two main causes of these robustness
deficits: distribution biases in the training datasets, and the tendency of the
metric paradigm. By incorporating token-level constraints, we enhance the
robustness of evaluation metrics, which in turn leads to an improvement in the
performance of machine translation systems. Codes are available at
\url{https://github.com/powerpuffpomelo/fairseq_mrt}.
Related papers
- Guardians of the Machine Translation Meta-Evaluation: Sentinel Metrics Fall In! [80.3129093617928]
Annually, at the Conference of Machine Translation (WMT), the Metrics Shared Task organizers conduct the meta-evaluation of Machine Translation (MT) metrics.
This work highlights two issues with the meta-evaluation framework currently employed in WMT, and assesses their impact on the metrics rankings.
We introduce the concept of sentinel metrics, which are designed explicitly to scrutinize the meta-evaluation process's accuracy, robustness, and fairness.
arXiv Detail & Related papers (2024-08-25T13:29:34Z) - BLEU Meets COMET: Combining Lexical and Neural Metrics Towards Robust
Machine Translation Evaluation [12.407789866525079]
We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena.
We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena.
arXiv Detail & Related papers (2023-05-30T15:50:46Z) - Extrinsic Evaluation of Machine Translation Metrics [78.75776477562087]
It is unclear if automatic metrics are reliable at distinguishing good translations from bad translations at the sentence level.
We evaluate the segment-level performance of the most widely used MT metrics (chrF, COMET, BERTScore, etc.) on three downstream cross-lingual tasks.
Our experiments demonstrate that all metrics exhibit negligible correlation with the extrinsic evaluation of the downstream outcomes.
arXiv Detail & Related papers (2022-12-20T14:39:58Z) - BLEU, METEOR, BERTScore: Evaluation of Metrics Performance in Assessing
Critical Translation Errors in Sentiment-oriented Text [1.4213973379473654]
Machine Translation (MT) of the online content is commonly used to process posts written in several languages.
In this paper, we assess the ability of automatic quality metrics to detect critical machine translation errors.
We conclude that there is a need for fine-tuning of automatic metrics to make them more robust in detecting sentiment critical errors.
arXiv Detail & Related papers (2021-09-29T07:51:17Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
proper handling of discourse significantly contributes to the quality of machine translation (MT)
Recent works in context-aware MT attempt to target a small set of discourse phenomena during evaluation.
We develop the Multilingual Discourse-Aware benchmark, a series of taggers that identify and evaluate model performance on discourse phenomena.
arXiv Detail & Related papers (2021-09-15T17:29:30Z) - Tangled up in BLEU: Reevaluating the Evaluation of Automatic Machine
Translation Evaluation Metrics [64.88815792555451]
We show that current methods for judging metrics are highly sensitive to the translations used for assessment.
We develop a method for thresholding performance improvement under an automatic metric against human judgements.
arXiv Detail & Related papers (2020-06-11T09:12:53Z) - On the Limitations of Cross-lingual Encoders as Exposed by
Reference-Free Machine Translation Evaluation [55.02832094101173]
Evaluation of cross-lingual encoders is usually performed either via zero-shot cross-lingual transfer in supervised downstream tasks or via unsupervised cross-lingual similarity.
This paper concerns ourselves with reference-free machine translation (MT) evaluation where we directly compare source texts to (sometimes low-quality) system translations.
We systematically investigate a range of metrics based on state-of-the-art cross-lingual semantic representations obtained with pretrained M-BERT and LASER.
We find that they perform poorly as semantic encoders for reference-free MT evaluation and identify their two key limitations.
arXiv Detail & Related papers (2020-05-03T22:10:23Z) - BLEU might be Guilty but References are not Innocent [34.817010352734]
We study different methods to collect references and compare their value in automated evaluation.
Motivated by the finding that typical references exhibit poor diversity, concentrating around translationese language, we develop a paraphrasing task.
Our method yields higher correlation with human judgment not only for the submissions of WMT 2019 English to German, but also for Back-translation and APE augmented MT output.
arXiv Detail & Related papers (2020-04-13T16:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.