Paraphrase Augmented Task-Oriented Dialog Generation
- URL: http://arxiv.org/abs/2004.07462v2
- Date: Sat, 2 May 2020 12:26:36 GMT
- Title: Paraphrase Augmented Task-Oriented Dialog Generation
- Authors: Silin Gao, Yichi Zhang, Zhijian Ou and Zhou Yu
- Abstract summary: We propose a paraphrase augmented response generation (PARG) framework that jointly trains a paraphrase model and a response generation model.
We also design a method to automatically construct paraphrase training data set based on dialog state and dialog act labels.
- Score: 68.1790912977053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural generative models have achieved promising performance on dialog
generation tasks if given a huge data set. However, the lack of high-quality
dialog data and the expensive data annotation process greatly limit their
application in real-world settings. We propose a paraphrase augmented response
generation (PARG) framework that jointly trains a paraphrase model and a
response generation model to improve the dialog generation performance. We also
design a method to automatically construct paraphrase training data set based
on dialog state and dialog act labels. PARG is applicable to various dialog
generation models, such as TSCP (Lei et al., 2018) and DAMD (Zhang et al.,
2019). Experimental results show that the proposed framework improves these
state-of-the-art dialog models further on CamRest676 and MultiWOZ. PARG also
significantly outperforms other data augmentation methods in dialog generation
tasks, especially under low resource settings.
Related papers
- Are LLMs Robust for Spoken Dialogues? [10.855403629160921]
Large Pre-Trained Language Models have demonstrated state-of-the-art performance in different downstream tasks.
Most of the publicly available datasets and benchmarks on task-oriented dialogues focus on written conversations.
We have evaluated the performance of LLMs for spoken task-oriented dialogues on the DSTC11 test sets.
arXiv Detail & Related papers (2024-01-04T14:36:38Z) - Contextual Data Augmentation for Task-Oriented Dialog Systems [8.085645180329417]
We develop a novel dialog augmentation model that generates a user turn, conditioning on full dialog context.
With a new prompt design for language model, and output re-ranking, the dialogs generated from our model can be directly used to train downstream dialog systems.
arXiv Detail & Related papers (2023-10-16T13:22:34Z) - EM Pre-training for Multi-party Dialogue Response Generation [86.25289241604199]
In multi-party dialogues, the addressee of a response utterance should be specified before it is generated.
We propose an Expectation-Maximization (EM) approach that iteratively performs the expectation steps to generate addressee labels.
arXiv Detail & Related papers (2023-05-21T09:22:41Z) - DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for
Dialog Response Generation [80.45816053153722]
DialogVED introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses.
We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation.
arXiv Detail & Related papers (2022-04-27T16:18:15Z) - GALAXY: A Generative Pre-trained Model for Task-Oriented Dialog with
Semi-Supervised Learning and Explicit Policy Injection [36.77204909711832]
We propose a novel pre-trained dialog model that explicitly learns dialog policy from limited labeled dialogs and large-scale unlabeled dialog corpora.
Specifically, we introduce a dialog act prediction task for policy optimization during pre-training and employ a consistency regularization term to refine the learned representation.
Empirical results show that GALAXY substantially improves the performance of task-oriented dialog systems.
arXiv Detail & Related papers (2021-11-29T15:24:36Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
In multi-turn dialog, utterances do not always take the full form of sentences.
We propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question.
arXiv Detail & Related papers (2020-12-14T10:58:01Z) - Modeling Long Context for Task-Oriented Dialogue State Generation [51.044300192906995]
We propose a multi-task learning model with a simple yet effective utterance tagging technique and a bidirectional language model.
Our approaches attempt to solve the problem that the performance of the baseline significantly drops when the input dialogue context sequence is long.
In our experiments, our proposed model achieves a 7.03% relative improvement over the baseline, establishing a new state-of-the-art joint goal accuracy of 52.04% on the MultiWOZ 2.0 dataset.
arXiv Detail & Related papers (2020-04-29T11:02:25Z) - Variational Hierarchical Dialog Autoencoder for Dialog State Tracking
Data Augmentation [59.174903564894954]
In this work, we extend this approach to the task of dialog state tracking for goal-oriented dialogs.
We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs.
Experiments on various dialog datasets show that our model improves the downstream dialog trackers' robustness via generative data augmentation.
arXiv Detail & Related papers (2020-01-23T15:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.