Contextual Data Augmentation for Task-Oriented Dialog Systems
- URL: http://arxiv.org/abs/2310.10380v1
- Date: Mon, 16 Oct 2023 13:22:34 GMT
- Title: Contextual Data Augmentation for Task-Oriented Dialog Systems
- Authors: Dustin Axman, Avik Ray, Shubham Garg, Jing Huang
- Abstract summary: We develop a novel dialog augmentation model that generates a user turn, conditioning on full dialog context.
With a new prompt design for language model, and output re-ranking, the dialogs generated from our model can be directly used to train downstream dialog systems.
- Score: 8.085645180329417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collection of annotated dialogs for training task-oriented dialog systems
have been one of the key bottlenecks in improving current models. While dialog
response generation has been widely studied on the agent side, it is not
evident if similar generative models can be used to generate a large variety
of, and often unexpected, user inputs that real dialog systems encounter in
practice. Existing data augmentation techniques such as paraphrase generation
do not take the dialog context into consideration. In this paper, we develop a
novel dialog augmentation model that generates a user turn, conditioning on
full dialog context. Additionally, with a new prompt design for language model,
and output re-ranking, the dialogs generated from our model can be directly
used to train downstream dialog systems. On common benchmark datasets MultiWoZ
and SGD, we show that our dialog augmentation model generates high quality
dialogs and improves dialog success rate by as much as $8\%$ over baseline.
Related papers
- DialogStudio: Towards Richest and Most Diverse Unified Dataset
Collection for Conversational AI [92.29874802394167]
DialogStudio is the largest and most diverse collection of dialogue datasets.
Our collection encompasses data from open-domain dialogues, task-oriented dialogues, natural language understanding, conversational recommendation, dialogue summarization, and knowledge-grounded dialogues.
arXiv Detail & Related papers (2023-07-19T17:57:53Z) - SPACE-3: Unified Dialog Model Pre-training for Task-Oriented Dialog
Understanding and Generation [123.37377363355363]
SPACE-3 is a novel unified semi-supervised pre-trained conversation model learning from large-scale dialog corpora.
It can be effectively fine-tuned on a wide range of downstream dialog tasks.
Results show that SPACE-3 achieves state-of-the-art performance on eight downstream dialog benchmarks.
arXiv Detail & Related papers (2022-09-14T14:17:57Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
We introduce GODEL, a large pre-trained language model for dialog.
We show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups.
A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses.
arXiv Detail & Related papers (2022-06-22T18:19:32Z) - Response Generation with Context-Aware Prompt Learning [19.340498579331555]
We present a novel approach for pre-trained dialogue modeling that casts the dialogue generation problem as a prompt-learning task.
Instead of fine-tuning on limited dialogue data, our approach, DialogPrompt, learns continuous prompt embeddings optimized for dialogue contexts.
Our approach significantly outperforms the fine-tuning baseline and the generic prompt-learning methods.
arXiv Detail & Related papers (2021-11-04T05:40:13Z) - Modeling Text-visual Mutual Dependency for Multi-modal Dialog Generation [35.45552689723718]
We propose frameworks to resolve a specific case of multi-modal dialog generation in the real world.
Specifically, we propose to model the mutual dependency between text-visual features.
We observe significant performance boosts over vanilla models when the mutual dependency between text and visual features is modeled.
arXiv Detail & Related papers (2021-05-30T07:20:28Z) - Paraphrase Augmented Task-Oriented Dialog Generation [68.1790912977053]
We propose a paraphrase augmented response generation (PARG) framework that jointly trains a paraphrase model and a response generation model.
We also design a method to automatically construct paraphrase training data set based on dialog state and dialog act labels.
arXiv Detail & Related papers (2020-04-16T05:12:36Z) - Conversation Learner -- A Machine Teaching Tool for Building Dialog
Managers for Task-Oriented Dialog Systems [57.082447660944965]
Conversation Learner is a machine teaching tool for building dialog managers.
It enables dialog authors to create a dialog flow using familiar tools, converting the dialog flow into a parametric model.
It allows dialog authors to improve the dialog manager over time by leveraging user-system dialog logs as training data.
arXiv Detail & Related papers (2020-04-09T00:10:54Z) - Variational Hierarchical Dialog Autoencoder for Dialog State Tracking
Data Augmentation [59.174903564894954]
In this work, we extend this approach to the task of dialog state tracking for goal-oriented dialogs.
We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs.
Experiments on various dialog datasets show that our model improves the downstream dialog trackers' robustness via generative data augmentation.
arXiv Detail & Related papers (2020-01-23T15:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.