Quantum-classical hybrid algorithm using an error-mitigating
$N$-representability condition to compute the Mott metal-insulator transition
- URL: http://arxiv.org/abs/2004.07739v1
- Date: Thu, 16 Apr 2020 16:23:29 GMT
- Title: Quantum-classical hybrid algorithm using an error-mitigating
$N$-representability condition to compute the Mott metal-insulator transition
- Authors: Scott E. Smart and David A. Mazziotti
- Abstract summary: We propose a class of quantum-classical hybrid algorithms that compute the energy from a two-electron reduced density matrix (2-RDM)
We compute the strongly correlated dissociation of doublet H$_3$ into three hydrogen atoms.
The hybrid quantum-classical computer matches the energies from full configuration interaction to 0.1 kcal/mol, one-tenth of "chemical accuracy"
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum algorithms for molecular electronic structure have been developed
with lower computational scaling than their classical counterparts, but
emerging quantum hardware is far from being capable of the
coherence,connectivity and gate errors required for their experimental
realization. Here we propose a class of quantum-classical hybrid algorithms
that compute the energy from a two-electron reduced density matrix (2-RDM). The
2-RDM is constrained by $N$-representability conditions, conditions for
representing an $N$-electron wavefunction, that mitigates noise from the
quantum circuit. We compute the strongly correlated dissociation of doublet
H$_{3}$ into three hydrogen atoms. The hybrid quantum-classical computer
matches the energies from full configuration interaction to 0.1 kcal/mol,
one-tenth of "chemical accuracy," even in the strongly correlated limit of
dissociation. Furthermore, the spatial locality of the computed one-electron
RDM reveals that the quantum computer accurately predicts the Mott
metal-insulator transition.
Related papers
- Enhancing the Electron Pair Approximation with Measurements on Trapped
Ion Quantum Computers [7.1240576597319825]
We introduce reduced density matrix (RDM) based second order theory (PT2) as an energetic correction to electron pair approximation.
The new approach takes into account the broken-pair energy contribution that is missing in pair-correlated electron simulations.
On two generations of the IonQ's trapped ion quantum computers, Aria and Forte, we find that unlike the VQE energy, the PT2 energy correction is highly noise-resilient.
arXiv Detail & Related papers (2023-12-09T01:13:46Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Resolving Correlated States of Benzyne on a Quantum Computer with an
Error-Mitigated Quantum Contracted Eigenvalue Solver [0.0]
We show that a contraction of the Schr"odinger equation is solved for the two-electron reduced density matrix (2-RDM)
In contrast to the traditional variational quantum eigensolver, the contracted quantum eigensolver solves an integration (or contraction) of the many-electron Schr"odinger equation onto the two-electron space.
arXiv Detail & Related papers (2021-03-11T18:58:43Z) - Quantum simulation of electronic structure with a transcorrelated
Hamiltonian: improved accuracy with a smaller footprint on the quantum
computer [2.640996411999115]
Quantum simulations of electronic structure with a transformed Hamiltonian that includes some electron correlation effects are demonstrated.
A transcorrelated Hamiltonian, paired with extremely compact bases, produces explicitly correlated energies comparable to those from much larger bases.
The use of the very compact transcorrelated Hamiltonian reduces the number of CNOT gates required to achieve cc-pVTZ quality by up to two orders of magnitude, and the number qubits by a factor of three.
arXiv Detail & Related papers (2020-06-03T19:15:32Z) - Efficient Two-Electron Ansatz for Benchmarking Quantum Chemistry on a
Quantum Computer [0.0]
We present an efficient ansatz for the computation of two-electron atoms and molecules within a hybrid quantum-classical algorithm.
The ansatz exploits the fundamental structure of the two-electron system, and treating the nonlocal and local degrees of freedom.
We implement this benchmark with error mitigation on two publicly available quantum computers.
arXiv Detail & Related papers (2020-04-21T23:37:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.