Efficient Two-Electron Ansatz for Benchmarking Quantum Chemistry on a
Quantum Computer
- URL: http://arxiv.org/abs/2004.10344v1
- Date: Tue, 21 Apr 2020 23:37:48 GMT
- Title: Efficient Two-Electron Ansatz for Benchmarking Quantum Chemistry on a
Quantum Computer
- Authors: Scott E. Smart and David A. Mazziotti
- Abstract summary: We present an efficient ansatz for the computation of two-electron atoms and molecules within a hybrid quantum-classical algorithm.
The ansatz exploits the fundamental structure of the two-electron system, and treating the nonlocal and local degrees of freedom.
We implement this benchmark with error mitigation on two publicly available quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum chemistry provides key applications for near-term quantum computing,
but these are greatly complicated by the presence of noise. In this work we
present an efficient ansatz for the computation of two-electron atoms and
molecules within a hybrid quantum-classical algorithm. The ansatz exploits the
fundamental structure of the two-electron system, and treating the nonlocal and
local degrees of freedom on the quantum and classical computers, respectively.
Here the nonlocal degrees of freedom scale linearly with respect to basis-set
size, giving a linear ansatz with only $\mathcal{O}(1)$ circuit preparations
required for reduced state tomography. We implement this benchmark with error
mitigation on two publicly available quantum computers, calculating accurate
dissociation curves for 4- and 6- qubit calculations of ${\rm H}_\textrm{2}^{}$
and ${\rm H}_\textrm{3}^+$.
Related papers
- Spin coupling is all you need: Encoding strong electron correlation on quantum computers [0.0]
We show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states.
Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems.
arXiv Detail & Related papers (2024-04-29T17:14:21Z) - Localized Quantum Chemistry on Quantum Computers [0.6649973446180738]
Quantum chemistry calculations are typically limited by the computation cost that scales exponentially with the size of the system.
We present a quantum algorithm that combines a localization of multireference wave functions of chemical systems with quantum phase estimation.
arXiv Detail & Related papers (2022-03-03T20:52:22Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Calculation of the ground-state Stark effect in small molecules using
the variational quantum eigensolver [0.0]
We study a quantum simulation for the hydrogen (H2) and lithium hydride (LiH) molecules, at an actual commercially available quantum computer, the IBM Q.
Using the Variational Quantum Eigensolver (VQE) method, we study the molecule's ground state energy versus interatomic distance, under the action of stationary electric fields.
arXiv Detail & Related papers (2021-03-22T11:49:42Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum-classical hybrid algorithm using an error-mitigating
$N$-representability condition to compute the Mott metal-insulator transition [0.0]
We propose a class of quantum-classical hybrid algorithms that compute the energy from a two-electron reduced density matrix (2-RDM)
We compute the strongly correlated dissociation of doublet H$_3$ into three hydrogen atoms.
The hybrid quantum-classical computer matches the energies from full configuration interaction to 0.1 kcal/mol, one-tenth of "chemical accuracy"
arXiv Detail & Related papers (2020-04-16T16:23:29Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems.
In this work, we present a detailed roadmap on how to simulate a two-dimensional electron gas---cooled to absolute zero and pierced by a strong magnetic field---on a quantum computer.
arXiv Detail & Related papers (2020-03-05T10:17:21Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.