論文の概要: Unsupervised Learning of Landmarks based on Inter-Intra Subject
Consistencies
- arxiv url: http://arxiv.org/abs/2004.07936v2
- Date: Tue, 7 Jul 2020 23:04:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 21:55:19.755789
- Title: Unsupervised Learning of Landmarks based on Inter-Intra Subject
Consistencies
- Title(参考訳): イントラ間の主題構成に基づくランドマークの教師なし学習
- Authors: Weijian Li, Haofu Liao, Shun Miao, Le Lu, and Jiebo Luo
- Abstract要約: 本稿では,物体間ランドマーク成分を顔画像に組み込むことにより,画像ランドマーク発見のための教師なし学習手法を提案する。
これは、補助的な主題関連構造に基づいて、元の主題のランドマークを変換するオブジェクト間マッピングモジュールによって達成される。
変換された画像から元の被写体に戻るために、ランドマーク検出器は、対のオブジェクト内画像と対のオブジェクト間画像の両方に一貫した意味を含む空間的位置を学習せざるを得ない。
- 参考スコア(独自算出の注目度): 72.67344725725961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel unsupervised learning approach to image landmark discovery
by incorporating the inter-subject landmark consistencies on facial images.
This is achieved via an inter-subject mapping module that transforms original
subject landmarks based on an auxiliary subject-related structure. To recover
from the transformed images back to the original subject, the landmark detector
is forced to learn spatial locations that contain the consistent semantic
meanings both for the paired intra-subject images and between the paired
inter-subject images. Our proposed method is extensively evaluated on two
public facial image datasets (MAFL, AFLW) with various settings. Experimental
results indicate that our method can extract the consistent landmarks for both
datasets and achieve better performances compared to the previous
state-of-the-art methods quantitatively and qualitatively.
- Abstract(参考訳): 物体間ランドマークを顔画像に組み込むことにより、画像ランドマーク発見のための教師なし学習手法を提案する。
これはサブジェクト間のマッピングモジュールによって実現され、補助的な主題関連構造に基づいて元の主題のランドマークが変換される。
変換された画像から元の主題に戻すために、ランドマーク検出器は、対のオブジェクト内画像と対のオブジェクト間画像の両方に一貫した意味を含む空間的位置を学習せざるを得ない。
提案手法は2つの公開顔画像データセット(MAFL, AFLW)に対して,様々な設定で広範に評価する。
実験の結果,両データセットの一貫したランドマークを抽出でき,従来の最先端手法と比較して定量的・質的に優れた性能が得られることがわかった。
関連論文リスト
- HEAP: Unsupervised Object Discovery and Localization with Contrastive
Grouping [29.678756772610797]
教師なしオブジェクトの発見と位置決めは、監督なしで画像内のオブジェクトを検出し、セグメント化することを目的としている。
近年の取り組みは、自己監督型トランスフォーマー機能を利用して、有能な前景物体を識別する顕著な可能性を実証している。
これらの問題に対処するために、Herarchical mErging framework via contrAstive grouPing (HEAP) を紹介する。
論文 参考訳(メタデータ) (2023-12-29T06:46:37Z) - Segment Anything Model Meets Image Harmonization [13.415810438244788]
合成画像の前景を調整して背景をシームレスに整合させることを目的とした画像合成において,画像調和は重要な技術である。
現在の手法では、グローバルレベルまたはピクセルレベルの特徴マッチングが採用されている。
本研究では,前景と背景特徴の視覚的一貫性学習を導くために,事前学習したセグメンテーションモデル(SAM)によって出力されるセグメンテーションマップを利用する意味誘導型領域認識型インスタンス正規化(SRIN)を提案する。
論文 参考訳(メタデータ) (2023-12-20T02:57:21Z) - Learning to search for and detect objects in foveal images using deep
learning [3.655021726150368]
本研究では,画像中のクラスを探索する人間の客観的な注意をエミュレートする固定予測モデルを用いる。
そして、各固定点のフェーブされた画像を分類して、シーンにターゲットが存在するか否かを判定する。
本稿では,2つのタスク間の知識伝達を可能とし,修正予測と検出を同時に行うことができる新しいデュアルタスクモデルを提案する。
論文 参考訳(メタデータ) (2023-04-12T09:50:25Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Mutual Information Maximization on Disentangled Representations for
Differential Morph Detection [29.51265709271036]
ランドマークと外観のゆがみを利用した新しい微分形態検出フレームワークを提案する。
提案するフレームワークは、最先端の微分形態検出性能を提供する。
論文 参考訳(メタデータ) (2020-12-02T21:31:02Z) - Rethinking of the Image Salient Object Detection: Object-level Semantic
Saliency Re-ranking First, Pixel-wise Saliency Refinement Latter [62.26677215668959]
本稿では,意味的に有意な領域を粗い位置で特定する,軽量で教師付きの深層ネットワークを提案する。
次に,これらセマンティック・サリエント領域の深層モデルを画素ワイド・サリエンシ改善として融合する。
提案手法は単純だが有効であり,本手法は主眼をオブジェクトレベルのセマンティック・リグレード問題とみなすための最初の試みである。
論文 参考訳(メタデータ) (2020-08-10T07:12:43Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - Unsupervised Landmark Learning from Unpaired Data [117.81440795184587]
教師なしランドマーク学習の最近の試みは、外観は似ているがポーズでは異なる合成画像対を活用する。
本稿では,2回スワッピング・リコンストラクション・ストラテジーを適用して最終監視を行うクロスイメージ・サイクル整合性フレームワークを提案する。
提案するフレームワークは,強いベースラインを大きなマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-06-29T13:57:20Z) - Cross-domain Correspondence Learning for Exemplar-based Image
Translation [59.35767271091425]
本稿では,異なる領域の入力からフォトリアリスティックな画像を合成する,例題に基づく画像翻訳のためのフレームワークを提案する。
出力は、例において意味的に対応するオブジェクトと整合したスタイル(例えば、色、テクスチャ)を持つ。
本手法は画像品質の面で最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-04-12T09:10:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。