Estimation of sparse Gaussian graphical models with hidden clustering
structure
- URL: http://arxiv.org/abs/2004.08115v1
- Date: Fri, 17 Apr 2020 08:43:31 GMT
- Title: Estimation of sparse Gaussian graphical models with hidden clustering
structure
- Authors: Meixia Lin, Defeng Sun, Kim-Chuan Toh, Chengjing Wang
- Abstract summary: We propose a model to estimate the sparse Gaussian graphical models with hidden clustering structure.
We develop a symmetric Gauss-Seidel based alternating direction method of the multipliers.
Numerical experiments on both synthetic data and real data demonstrate the good performance of our model.
- Score: 8.258451067861932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimation of Gaussian graphical models is important in natural science when
modeling the statistical relationships between variables in the form of a
graph. The sparsity and clustering structure of the concentration matrix is
enforced to reduce model complexity and describe inherent regularities. We
propose a model to estimate the sparse Gaussian graphical models with hidden
clustering structure, which also allows additional linear constraints to be
imposed on the concentration matrix. We design an efficient two-phase algorithm
for solving the proposed model. We develop a symmetric Gauss-Seidel based
alternating direction method of the multipliers (sGS-ADMM) to generate an
initial point to warm-start the second phase algorithm, which is a proximal
augmented Lagrangian method (pALM), to get a solution with high accuracy.
Numerical experiments on both synthetic data and real data demonstrate the good
performance of our model, as well as the efficiency and robustness of our
proposed algorithm.
Related papers
- Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
We investigate efficient learning from higher-order graph convolution and learning directly from adjacency matrix for node classification.
We show that the resulting model lead to new graphs and residual scaling parameter.
We demonstrate that the proposed methods obtain improved accuracy for node-classification of non-homophilous parameters.
arXiv Detail & Related papers (2022-09-12T04:46:55Z) - From graphs to DAGs: a low-complexity model and a scalable algorithm [0.0]
This paper presents a low-complexity model, called LoRAM for Low-Rank Additive Model, which combines low-rank matrix factorization with a sparsification mechanism for the continuous optimization of DAGs.
The proposed approach achieves a reduction from a cubic complexity to quadratic complexity while handling the same DAG characteristic function as NoTears.
arXiv Detail & Related papers (2022-04-10T10:22:56Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - Spike-and-Slab Generalized Additive Models and Scalable Algorithms for
High-Dimensional Data [0.0]
We propose hierarchical generalized additive models (GAMs) to accommodate high-dimensional data.
We consider the smoothing penalty for proper shrinkage of curve and separation of smoothing function linear and nonlinear spaces.
Two and deterministic algorithms, EM-Coordinate Descent and EM-Iterative Weighted Least Squares, are developed for different utilities.
arXiv Detail & Related papers (2021-10-27T14:11:13Z) - T-LoHo: A Bayesian Regularization Model for Structured Sparsity and
Smoothness on Graphs [0.0]
In graph-structured data, structured sparsity and smoothness tend to cluster together.
We propose a new prior for high dimensional parameters with graphical relations.
We use it to detect structured sparsity and smoothness simultaneously.
arXiv Detail & Related papers (2021-07-06T10:10:03Z) - Regularization of Mixture Models for Robust Principal Graph Learning [0.0]
A regularized version of Mixture Models is proposed to learn a principal graph from a distribution of $D$-dimensional data points.
Parameters of the model are iteratively estimated through an Expectation-Maximization procedure.
arXiv Detail & Related papers (2021-06-16T18:00:02Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z) - Analysis of Bayesian Inference Algorithms by the Dynamical Functional
Approach [2.8021833233819486]
We analyze an algorithm for approximate inference with large Gaussian latent variable models in a student-trivial scenario.
For the case of perfect data-model matching, the knowledge of static order parameters derived from the replica method allows us to obtain efficient algorithmic updates.
arXiv Detail & Related papers (2020-01-14T17:22:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.