A Model for Multi-View Residual Covariances based on Perspective
Deformation
- URL: http://arxiv.org/abs/2202.00765v1
- Date: Tue, 1 Feb 2022 21:21:56 GMT
- Title: A Model for Multi-View Residual Covariances based on Perspective
Deformation
- Authors: Alejandro Fontan, Laura Oliva, Javier Civera and Rudolph Triebel
- Abstract summary: We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
- Score: 88.21738020902411
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we derive a model for the covariance of the visual residuals in
multi-view SfM, odometry and SLAM setups. The core of our approach is the
formulation of the residual covariances as a combination of geometric and
photometric noise sources. And our key novel contribution is the derivation of
a term modelling how local 2D patches suffer from perspective deformation when
imaging 3D surfaces around a point. Together, these add up to an efficient and
general formulation which not only improves the accuracy of both feature-based
and direct methods, but can also be used to estimate more accurate measures of
the state entropy and hence better founded point visibility thresholds. We
validate our model with synthetic and real data and integrate it into
photometric and feature-based Bundle Adjustment, improving their accuracy with
a negligible overhead.
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - A Stochastic-Geometrical Framework for Object Pose Estimation based on Mixture Models Avoiding the Correspondence Problem [0.0]
This paper presents a novel-geometrical modeling framework for object pose estimation based on observing multiple feature points.
Probabilistic modeling utilizing mixture models shows the potential for accurate and robust pose estimations.
arXiv Detail & Related papers (2023-11-29T21:45:33Z) - Towards Scalable Multi-View Reconstruction of Geometry and Materials [27.660389147094715]
We propose a novel method for joint recovery of camera pose, object geometry and spatially-varying Bidirectional Reflectance Distribution Function (svBRDF) of 3D scenes.
The input are high-resolution RGBD images captured by a mobile, hand-held capture system with point lights for active illumination.
arXiv Detail & Related papers (2023-06-06T15:07:39Z) - Explicit Correspondence Matching for Generalizable Neural Radiance
Fields [49.49773108695526]
We present a new NeRF method that is able to generalize to new unseen scenarios and perform novel view synthesis with as few as two source views.
The explicit correspondence matching is quantified with the cosine similarity between image features sampled at the 2D projections of a 3D point on different views.
Our method achieves state-of-the-art results on different evaluation settings, with the experiments showing a strong correlation between our learned cosine feature similarity and volume density.
arXiv Detail & Related papers (2023-04-24T17:46:01Z) - DeepMLE: A Robust Deep Maximum Likelihood Estimator for Two-view
Structure from Motion [9.294501649791016]
Two-view structure from motion (SfM) is the cornerstone of 3D reconstruction and visual SLAM (vSLAM)
We formulate the two-view SfM problem as a maximum likelihood estimation (MLE) and solve it with the proposed framework, denoted as DeepMLE.
Our method significantly outperforms the state-of-the-art end-to-end two-view SfM approaches in accuracy and generalization capability.
arXiv Detail & Related papers (2022-10-11T15:07:25Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - Surrogate-based variational data assimilation for tidal modelling [0.0]
Data assimilation (DA) is widely used to combine physical knowledge and observations.
In a context of climate change, old calibrations can not necessarily be used for new scenarios.
This raises the question of DA computational cost.
Two methods are proposed to replace the complex model by a surrogate.
arXiv Detail & Related papers (2021-06-08T07:39:38Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.