IDDA: a large-scale multi-domain dataset for autonomous driving
- URL: http://arxiv.org/abs/2004.08298v2
- Date: Fri, 22 Oct 2021 08:59:37 GMT
- Title: IDDA: a large-scale multi-domain dataset for autonomous driving
- Authors: Emanuele Alberti, Antonio Tavera, Carlo Masone, Barbara Caputo
- Abstract summary: This paper contributes a new large scale, synthetic dataset for semantic segmentation with more than 100 different source visual domains.
The dataset has been created to explicitly address the challenges of domain shift between training and test data in various weather and view point conditions.
- Score: 16.101248613062292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation is key in autonomous driving. Using deep visual
learning architectures is not trivial in this context, because of the
challenges in creating suitable large scale annotated datasets. This issue has
been traditionally circumvented through the use of synthetic datasets, that
have become a popular resource in this field. They have been released with the
need to develop semantic segmentation algorithms able to close the visual
domain shift between the training and test data. Although exacerbated by the
use of artificial data, the problem is extremely relevant in this field even
when training on real data. Indeed, weather conditions, viewpoint changes and
variations in the city appearances can vary considerably from car to car, and
even at test time for a single, specific vehicle. How to deal with domain
adaptation in semantic segmentation, and how to leverage effectively several
different data distributions (source domains) are important research questions
in this field. To support work in this direction, this paper contributes a new
large scale, synthetic dataset for semantic segmentation with more than 100
different source visual domains. The dataset has been created to explicitly
address the challenges of domain shift between training and test data in
various weather and view point conditions, in seven different city types.
Extensive benchmark experiments assess the dataset, showcasing open challenges
for the current state of the art. The dataset will be available at:
https://idda-dataset.github.io/home/ .
Related papers
- Multi-Target Unsupervised Domain Adaptation for Semantic Segmentation without External Data [25.386114973556406]
Multi-target unsupervised domain adaptation (UDA) aims to learn a unified model to address the domain shift between multiple target domains.
Most existing solutions require labeled data from the source domain and unlabeled data from multiple target domains concurrently during training.
We introduce a new strategy called "multi-target UDA without external data" for semantic segmentation.
arXiv Detail & Related papers (2024-05-10T14:29:51Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
We introduce UniTraj, a comprehensive framework that unifies various datasets, models, and evaluation criteria.
We conduct extensive experiments and find that model performance significantly drops when transferred to other datasets.
We provide insights into dataset characteristics to explain these findings.
arXiv Detail & Related papers (2024-03-22T10:36:50Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - TridentAdapt: Learning Domain-invariance via Source-Target Confrontation
and Self-induced Cross-domain Augmentation [0.0]
Key challenge is to learn domain-agnostic representation of the inputs in order to benefit from virtual data.
We propose a novel trident-like architecture that enforces a shared feature encoder to satisfy confrontational source and target constraints simultaneously.
We also introduce a novel training pipeline enabling self-induced cross-domain data augmentation during the forward pass.
arXiv Detail & Related papers (2021-11-30T11:25:46Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Robust wav2vec 2.0: Analyzing Domain Shift in Self-Supervised
Pre-Training [67.71228426496013]
We show that using target domain data during pre-training leads to large performance improvements across a variety of setups.
We find that pre-training on multiple domains improves performance generalization on domains not seen during training.
arXiv Detail & Related papers (2021-04-02T12:53:15Z) - DAIL: Dataset-Aware and Invariant Learning for Face Recognition [67.4903809903022]
To achieve good performance in face recognition, a large scale training dataset is usually required.
It is problematic and troublesome to naively combine different datasets due to two major issues.
Naively treating the same person as different classes in different datasets during training will affect back-propagation.
manually cleaning labels may take formidable human efforts, especially when there are millions of images and thousands of identities.
arXiv Detail & Related papers (2021-01-14T01:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.