Multi-Target Unsupervised Domain Adaptation for Semantic Segmentation without External Data
- URL: http://arxiv.org/abs/2405.06502v1
- Date: Fri, 10 May 2024 14:29:51 GMT
- Title: Multi-Target Unsupervised Domain Adaptation for Semantic Segmentation without External Data
- Authors: Yonghao Xu, Pedram Ghamisi, Yannis Avrithis,
- Abstract summary: Multi-target unsupervised domain adaptation (UDA) aims to learn a unified model to address the domain shift between multiple target domains.
Most existing solutions require labeled data from the source domain and unlabeled data from multiple target domains concurrently during training.
We introduce a new strategy called "multi-target UDA without external data" for semantic segmentation.
- Score: 25.386114973556406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-target unsupervised domain adaptation (UDA) aims to learn a unified model to address the domain shift between multiple target domains. Due to the difficulty of obtaining annotations for dense predictions, it has recently been introduced into cross-domain semantic segmentation. However, most existing solutions require labeled data from the source domain and unlabeled data from multiple target domains concurrently during training. Collectively, we refer to this data as "external". When faced with new unlabeled data from an unseen target domain, these solutions either do not generalize well or require retraining from scratch on all data. To address these challenges, we introduce a new strategy called "multi-target UDA without external data" for semantic segmentation. Specifically, the segmentation model is initially trained on the external data. Then, it is adapted to a new unseen target domain without accessing any external data. This approach is thus more scalable than existing solutions and remains applicable when external data is inaccessible. We demonstrate this strategy using a simple method that incorporates self-distillation and adversarial learning, where knowledge acquired from the external data is preserved during adaptation through "one-way" adversarial learning. Extensive experiments in several synthetic-to-real and real-to-real adaptation settings on four benchmark urban driving datasets show that our method significantly outperforms current state-of-the-art solutions, even in the absence of external data. Our source code is available online (https://github.com/YonghaoXu/UT-KD).
Related papers
- Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives [16.68091981866261]
Unsupervised domain adaptation (UDA) is proposed to counter the performance drop on data in a target domain.
UDA has yielded promising results on natural image processing, video analysis, natural language processing, time-series data analysis, medical image analysis, etc.
arXiv Detail & Related papers (2022-08-15T20:05:07Z) - Domain Adaptive Semantic Segmentation without Source Data [50.18389578589789]
We investigate domain adaptive semantic segmentation without source data, which assumes that the model is pre-trained on the source domain.
We propose an effective framework for this challenging problem with two components: positive learning and negative learning.
Our framework can be easily implemented and incorporated with other methods to further enhance the performance.
arXiv Detail & Related papers (2021-10-13T04:12:27Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples.
We propose a method to learn the threshold using source samples and to adapt it to the target domain.
Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target.
arXiv Detail & Related papers (2021-04-07T18:36:31Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Unsupervised and self-adaptative techniques for cross-domain person
re-identification [82.54691433502335]
Person Re-Identification (ReID) across non-overlapping cameras is a challenging task.
Unsupervised Domain Adaptation (UDA) is a promising alternative, as it performs feature-learning adaptation from a model trained on a source to a target domain without identity-label annotation.
In this paper, we propose a novel UDA-based ReID method that takes advantage of triplets of samples created by a new offline strategy.
arXiv Detail & Related papers (2021-03-21T23:58:39Z) - Flexible deep transfer learning by separate feature embeddings and
manifold alignment [0.0]
Object recognition is a key enabler across industry and defense.
Unfortunately, algorithms trained on existing labeled datasets do not directly generalize to new data because the data distributions do not match.
We propose a novel deep learning framework that overcomes this limitation by learning separate feature extractions for each domain.
arXiv Detail & Related papers (2020-12-22T19:24:44Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.