論文の概要: Data-driven Flood Emulation: Speeding up Urban Flood Predictions by Deep
Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2004.08340v2
- Date: Wed, 13 May 2020 10:19:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 13:07:08.857584
- Title: Data-driven Flood Emulation: Speeding up Urban Flood Predictions by Deep
Convolutional Neural Networks
- Title(参考訳): データ駆動型洪水エミュレーション:深層畳み込みニューラルネットワークによる都市洪水予測の高速化
- Authors: Zifeng Guo, Joao P. Leitao, Nuno E. Simoes, and Vahid Moosavi
- Abstract要約: 本稿では,最大水深の予測を画像から画像への変換問題と考えることを提案する。
結果は、シミュレーションを行うのではなく、データから学習した情報を用いて入力標高から生成される。
提案したニューラルネットワークは、都市レイアウト計画のための洪水予測など、異なるが関連する問題に適用できる可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational complexity has been the bottleneck of applying physically-based
simulations on large urban areas with high spatial resolution for efficient and
systematic flooding analyses and risk assessments. To address this issue of
long computational time, this paper proposes that the prediction of maximum
water depth rasters can be considered as an image-to-image translation problem
where the results are generated from input elevation rasters using the
information learned from data rather than by conducting simulations, which can
significantly accelerate the prediction process. The proposed approach was
implemented by a deep convolutional neural network trained on flood simulation
data of 18 designed hyetographs on three selected catchments. Multiple tests
with both designed and real rainfall events were performed and the results show
that the flood predictions by neural network uses only 0.5 % of time comparing
with physically-based approaches, with promising accuracy and ability of
generalizations. The proposed neural network can also potentially be applied to
different but relevant problems including flood predictions for urban layout
planning.
- Abstract(参考訳): 計算複雑性は,高空間分解能の大規模都市に物理シミュレーションを適用し,効率的かつ体系的な洪水解析とリスク評価を行うボトルネックとなっている。
そこで本研究では, 最大水深ラスターの予測を, 入力高度ラスターから生成する画像から画像への変換問題として, シミュレーションを行うよりもデータから得た情報を用いて行うこと, 予測プロセスを著しく加速することを提案する。
提案手法は, 深層畳み込みニューラルネットワークを用いて, 選択した3つの流域における18の設計ヒエトグラフの洪水シミュレーションデータを学習した。
人工降雨と実際の降雨の両方で複数の実験を行い, ニューラルネットワークによる洪水予測は, 0.5 %の時間しか使用せず, 予測精度と一般化能力が期待できることを示した。
提案したニューラルネットワークは、都市レイアウト計画のための洪水予測など、異なるが関連する問題にも適用することができる。
関連論文リスト
- High-Resolution Flood Probability Mapping Using Generative Machine Learning with Large-Scale Synthetic Precipitation and Inundation Data [0.9719868595277402]
Flood-Precipitation Generative Adversarial Network (Flood-Precipitation Generative Adversarial Network)は、生成機械学習を利用して大規模な人工浸水データをシミュレートする新しい手法である。
Flood-Precip GANは、高解像度の洪水確率マップを作成するのに必要な合成洪水深度データを生成するスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-20T22:43:31Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Accelerating Domain-aware Deep Learning Models with Distributed Training [0.8164433158925593]
モデル性能を改善したドメイン固有知識を利用した分散ドメイン認識ネットワークを提案する。
以上の結果から,最大4.1倍の速さで流出口の流出ピークを効果的に予測した。
提案手法は全体の12.6倍の高速化を実現し,平均予測性能は16%向上した。
論文 参考訳(メタデータ) (2023-01-25T22:59:47Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Probabilistic modeling of lake surface water temperature using a
Bayesian spatio-temporal graph convolutional neural network [55.41644538483948]
本研究では,湖沼の温度をある程度の深さでシミュレーションし,気象学的特徴と合わせて評価することを提案する。
本研究は,提案モデルが湖沼表面全体に均質に優れた性能をもたらすことを示す。
結果は、最先端のベイズ深層学習法と比較される。
論文 参考訳(メタデータ) (2021-09-27T09:19:53Z) - Physics-Aware Downsampling with Deep Learning for Scalable Flood
Modeling [26.744689956865628]
我々は深層ニューラルネットワークをトレーニングし、地形図の物理インフォームドダウンサンプリングを行う。
本手法により,正確な解を維持しつつ,計算コストを大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-06-14T08:05:14Z) - Breaking the Limits of Remote Sensing by Simulation and Deep Learning
for Flood and Debris Flow Mapping [13.167695669500391]
リモートセンシング画像から浸水深度と破砕流による地形変形を推定する枠組みを提案する。
水と破片の流れシミュレータは、様々な人工災害シナリオのトレーニングデータを生成する。
このような合成データに基づいてトレーニングされた注意U-NetおよびLinkNetアーキテクチャに基づく回帰モデルにより,最大水位と地形変形を予測することができることを示す。
論文 参考訳(メタデータ) (2020-06-09T10:59:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。