Complexity Analysis of an Edge Preserving CNN SAR Despeckling Algorithm
- URL: http://arxiv.org/abs/2004.08345v2
- Date: Wed, 17 Jun 2020 17:58:48 GMT
- Title: Complexity Analysis of an Edge Preserving CNN SAR Despeckling Algorithm
- Authors: Sergio Vitale, Giampaolo Ferraioli, Vito Pascazio
- Abstract summary: We exploit the effect of the complexity of the convolutional neural network for SAR despeckling.
Deeper networks better generalize on both simulated and real images.
- Score: 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: SAR images are affected by multiplicative noise that impairs their
interpretations. In the last decades several methods for SAR denoising have
been proposed and in the last years great attention has moved towards deep
learning based solutions. Based on our last proposed convolutional neural
network for SAR despeckling, here we exploit the effect of the complexity of
the network. More precisely, once a dataset has been fixed, we carry out an
analysis of the network performance with respect to the number of layers and
numbers of features the network is composed of. Evaluation on simulated and
real data are carried out. The results show that deeper networks better
generalize on both simulated and real images.
Related papers
- Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
Scaling the raw images creates out-of-distribution data, which makes it a possible adversarial attack to fool the networks.
In this work, we propose a Scaling-distortion dataset ImageNet-CS by Scaling a subset of the ImageNet Challenge dataset by different multiples.
arXiv Detail & Related papers (2022-09-02T08:06:58Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - New SAR target recognition based on YOLO and very deep multi-canonical
correlation analysis [0.1503974529275767]
This paper proposes a robust feature extraction method for SAR image target classification by adaptively fusing effective features from different CNN layers.
Experiments on the MSTAR dataset demonstrate that the proposed method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T18:10:26Z) - ADMM-DAD net: a deep unfolding network for analysis compressed sensing [20.88999913266683]
We propose a new deep unfolding neural network based on the ADMM algorithm for analysis Compressed Sensing.
The proposed network jointly learns a redundant analysis operator for sparsification and reconstructs the signal of interest.
arXiv Detail & Related papers (2021-10-13T18:56:59Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
This work aims to present a novel method for filtering the speckle noise from Sentinel-1 data by applying Deep Learning (DL) algorithms, based on Convolutional Neural Networks (CNNs)
The obtained results, if compared with the state of the art, show a clear improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
arXiv Detail & Related papers (2021-04-19T14:43:07Z) - SGD-Net: Efficient Model-Based Deep Learning with Theoretical Guarantees [35.01173046356158]
We propose SGD-Net as a new methodology for improving the efficiency of deep unfolding networks.
Our theoretical analysis shows that SGD-Net can be trained to approximate batch deep unfolding networks to an arbitrary precision.
Our numerical results on intensity diffraction tomography and sparse-view computed tomography show that SGD-Net can match the performance of the batch network at a fraction of training and testing complexity.
arXiv Detail & Related papers (2021-01-22T23:33:11Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
This paper proposes a new deep-unfolding-based network design for the problem of Robust Principal Component Analysis (RPCA)
Unlike existing designs, our approach focuses on modeling the temporal correlation between the sparse representations of consecutive video frames.
Experimentation using the moving MNIST dataset shows that the proposed network outperforms a recently proposed state-of-the-art RPCA network in the task of video foreground-background separation.
arXiv Detail & Related papers (2020-10-02T11:40:09Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.