Transformer-based SAR Image Despeckling
- URL: http://arxiv.org/abs/2201.09355v1
- Date: Sun, 23 Jan 2022 20:09:01 GMT
- Title: Transformer-based SAR Image Despeckling
- Authors: Malsha V. Perera, Wele Gedara Chaminda Bandara, Jeya Maria Jose
Valanarasu, and Vishal M. Patel
- Abstract summary: We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
- Score: 53.99620005035804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic Aperture Radar (SAR) images are usually degraded by a
multiplicative noise known as speckle which makes processing and interpretation
of SAR images difficult. In this paper, we introduce a transformer-based
network for SAR image despeckling. The proposed despeckling network comprises
of a transformer-based encoder which allows the network to learn global
dependencies between different image regions - aiding in better despeckling.
The network is trained end-to-end with synthetically generated speckled images
using a composite loss function. Experiments show that the proposed method
achieves significant improvements over traditional and convolutional neural
network-based despeckling methods on both synthetic and real SAR images.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Deep Learning-based MRI Reconstruction with Artificial Fourier Transform (AFT)-Net [14.146848823672677]
We introduce a unified complex-valued deep learning framework-Artificial Fourier Transform Network (AFTNet)
AFTNet can be readily used to solve image inverse problems in domain transformation.
We show that AFTNet achieves superior accelerated MRI reconstruction compared to existing approaches.
arXiv Detail & Related papers (2023-12-18T02:50:45Z) - Spatial-Contextual Discrepancy Information Compensation for GAN
Inversion [67.21442893265973]
We introduce a novel spatial-contextual discrepancy information compensationbased GAN-inversion method (SDIC)
SDIC bridges the gap in image details between the original image and the reconstructed/edited image.
Our proposed method achieves the excellent distortion-editability trade-off at a fast inference speed for both image inversion and editing tasks.
arXiv Detail & Related papers (2023-12-12T08:58:56Z) - SRTransGAN: Image Super-Resolution using Transformer based Generative
Adversarial Network [16.243363392717434]
We propose a transformer-based encoder-decoder network as a generator to generate 2x images and 4x images.
The proposed SRTransGAN outperforms the existing methods by 4.38 % on an average of PSNR and SSIM scores.
arXiv Detail & Related papers (2023-12-04T16:22:39Z) - In-Domain GAN Inversion for Faithful Reconstruction and Editability [132.68255553099834]
We propose in-domain GAN inversion, which consists of a domain-guided domain-regularized and a encoder to regularize the inverted code in the native latent space of the pre-trained GAN model.
We make comprehensive analyses on the effects of the encoder structure, the starting inversion point, as well as the inversion parameter space, and observe the trade-off between the reconstruction quality and the editing property.
arXiv Detail & Related papers (2023-09-25T08:42:06Z) - JSRNN: Joint Sampling and Reconstruction Neural Networks for High
Quality Image Compressed Sensing [8.902545322578925]
Two sub-networks, which are the sampling sub-network and the reconstruction sub-network, are included in the proposed framework.
In the reconstruction sub-network, a cascade network combining stacked denoising autoencoder (SDA) and convolutional neural network (CNN) is designed to reconstruct signals.
This framework outperforms many other state-of-the-art methods, especially at low sampling rates.
arXiv Detail & Related papers (2022-11-11T02:20:30Z) - Contextual Learning in Fourier Complex Field for VHR Remote Sensing
Images [64.84260544255477]
transformer-based models demonstrated outstanding potential for learning high-order contextual relationships from natural images with general resolution (224x224 pixels)
We propose a complex self-attention (CSA) mechanism to model the high-order contextual information with less than half computations of naive SA.
By stacking various layers of CSA blocks, we propose the Fourier Complex Transformer (FCT) model to learn global contextual information from VHR aerial images.
arXiv Detail & Related papers (2022-10-28T08:13:33Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - A Dual-fusion Semantic Segmentation Framework With GAN For SAR Images [10.147351262526282]
A network based on the widely used encoderdecoder architecture is proposed to accomplish the synthetic aperture radar (SAR) images segmentation.
With the better representation capability of optical images, we propose to enrich SAR images with generated optical images via the generative adversative network (GAN) trained by numerous SAR and optical images.
arXiv Detail & Related papers (2022-06-02T15:22:29Z) - Generative Adversarial Networks for Synthesizing InSAR Patches [15.260123615399035]
Generative Adversarial Networks (GANs) have been employed with certain success for image translation tasks between optical and real-valued SAR intensity imagery.
The synthesis of artificial complex-valued InSAR image stacks asks for, besides good perceptual quality, more stringent quality metrics like phase noise and phase coherence.
This paper provides a signal processing model of generative CNN structures, describes effects influencing those quality metrics and presents a mapping scheme of complex-valued data to given CNN structures.
arXiv Detail & Related papers (2020-08-03T20:51:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.