論文の概要: Learning to Dehaze from Realistic Scene with A Fast Physics-based
Dehazing Network
- arxiv url: http://arxiv.org/abs/2004.08554v2
- Date: Tue, 22 Sep 2020 03:58:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 05:26:05.567708
- Title: Learning to Dehaze from Realistic Scene with A Fast Physics-based
Dehazing Network
- Title(参考訳): 物理に基づく高速デハジングネットワークによるリアルシーンからのデハジング学習
- Authors: Ruoteng Li, Xiaoyi Zhang, Shaodi You and Yu Li
- Abstract要約: 本稿では,HD(High-Definition)3Dフィルムの実際の屋外シーンを含む,大規模で多様なデハージングデータセットを提案する。
また,物理モデルにインスパイアされた軽量で信頼性の高いデハージングネットワークを提案する。
我々の手法は、他の手法よりも大きなマージンで優れ、新しい最先端の手法となる。
- 参考スコア(独自算出の注目度): 26.92874873109654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dehazing is a popular computer vision topic for long. A real-time dehazing
method with reliable performance is highly desired for many applications such
as autonomous driving. While recent learning-based methods require datasets
containing pairs of hazy images and clean ground truth references, it is
generally impossible to capture accurate ground truth in real scenes. Many
existing works compromise this difficulty to generate hazy images by rendering
the haze from depth on common RGBD datasets using the haze imaging model.
However, there is still a gap between the synthetic datasets and real hazy
images as large datasets with high-quality depth are mostly indoor and depth
maps for outdoor are imprecise. In this paper, we complement the existing
datasets with a new, large, and diverse dehazing dataset containing real
outdoor scenes from High-Definition (HD) 3D movies. We select a large number of
high-quality frames of real outdoor scenes and render haze on them using depth
from stereo. Our dataset is more realistic than existing ones and we
demonstrate that using this dataset greatly improves the dehazing performance
on real scenes. In addition to the dataset, we also propose a light and
reliable dehazing network inspired by the physics model. Our approach
outperforms other methods by a large margin and becomes the new
state-of-the-art method. Moreover, the light-weight design of the network
enables our method to run at a real-time speed, which is much faster than other
baseline methods.
- Abstract(参考訳): デハジングは長い間コンピュータビジョンのトピックとして人気がある。
自動運転など多くのアプリケーションでは,信頼性の高いリアルタイムデハジング手法が求められている。
近年の学習ベース手法では,一対のぼやけた画像とクリーングラウンドの真理参照を含むデータセットが必要であるが,実際のシーンで正確な地理を捉えることは一般的に不可能である。
多くの既存の研究は、ヘイズイメージングモデルを使用して、一般的なRGBDデータセットの奥行きからヘイズをレンダリングすることで、ヘイズ画像を生成することの難しさを損なう。
しかし、高品質の深度を持つ大規模なデータセットは主に屋内であり、屋外の深度マップは不正確であるため、合成データセットと実際の湿潤な画像の間にはまだギャップがある。
本稿では,既存のデータセットを,HD(High-Definition)3Dフィルムの実際の屋外シーンを含む,大規模で多様なデハージングデータセットで補完する。
実際の屋外シーンの高品質なフレームを多数選択し,ステレオからの奥行きを利用してヘイズを描画する。
我々のデータセットは既存のデータセットよりも現実的であり、このデータセットを使用することで実際のシーンでのデハージングパフォーマンスが大幅に向上することを示した。
データセットに加えて,物理モデルにインスパイアされた,軽量で信頼性の高いデヘイジングネットワークを提案する。
提案手法は,他の手法を大差で上回り,新たな最先端手法となる。
さらに,ネットワークの軽量化により,他のベースライン方式よりもはるかに高速なリアルタイム動作が可能となった。
関連論文リスト
- LMHaze: Intensity-aware Image Dehazing with a Large-scale Multi-intensity Real Haze Dataset [14.141433473509826]
本稿では,大規模で高品質な実世界のデータセットLMHazeを紹介する。
LMHazeは、屋内および屋外の多様な環境で撮影された、ヘイズフリーとヘイズフリーの2つの画像で構成されている。
そこで本研究では,Mambaをベースとした混合実験モデルを提案する。
論文 参考訳(メタデータ) (2024-10-21T15:20:02Z) - Den-SOFT: Dense Space-Oriented Light Field DataseT for 6-DOF Immersive Experience [28.651514326042648]
我々は,移動式マルチカメラ大空間高密度光場キャプチャシステムを構築した。
本研究の目的は,一般的な3次元シーン再構築アルゴリズムの開発に貢献することである。
収集されたデータセットは、既存のデータセットよりもはるかに密度が高い。
論文 参考訳(メタデータ) (2024-03-15T02:39:44Z) - EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices [53.28220984270622]
モバイル端末に暗黙的テクスチャを付加したtextbfSurf$ace 再構成手法を提案する。
提案手法は,合成と実世界の両方のデータセット上で,高品質な外観と正確なメッシュを再構築することができる。
我々の方法は1つのGPUを使ってたった1~2時間でトレーニングでき、40FPS(Frames per second)以上のモバイルデバイス上で実行することができる。
論文 参考訳(メタデータ) (2023-11-16T11:30:56Z) - HM3D-ABO: A Photo-realistic Dataset for Object-centric Multi-view 3D
Reconstruction [37.29140654256627]
本稿では、フォトリアリスティックなオブジェクト中心データセットHM3D-ABOを提案する。
リアルな屋内シーンとリアルなオブジェクトを構成することで構築される。
このデータセットは、カメラポーズ推定やノベルビュー合成といったタスクにも有用である。
論文 参考訳(メタデータ) (2022-06-24T16:02:01Z) - RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis [104.53930611219654]
約2000の複雑なシーンからレンダリングされた300k画像からなる,新しいビュー合成のための大規模合成データセットを提案する。
データセットは、新しいビュー合成のための既存の合成データセットよりも桁違いに大きい。
高品質な3Dメッシュの4つのソースを使用して、私たちのデータセットのシーンは、カメラビュー、照明、形状、材料、テクスチャの難しいバリエーションを示します。
論文 参考訳(メタデータ) (2022-05-14T13:15:32Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
本稿では,RGBDカメラを用いて動的屋内シーンのフリー視点映像を合成することを提案する。
我々は、RGBDフレームから点雲を生成し、それをニューラル機能を介して、自由視点ビデオにレンダリングする。
そこで本研究では,未完成の深度を適応的に塗布して新規なビューを描画する,シンプルなRegional Depth-Inpaintingモジュールを提案する。
論文 参考訳(メタデータ) (2022-04-22T03:17:35Z) - Stereo Matching by Self-supervision of Multiscopic Vision [65.38359887232025]
カメラ位置の整列で撮影した複数の画像を利用したステレオマッチングのための新しい自己監視フレームワークを提案する。
ネットワークを最適化するために、クロスフォトメトリックロス、不確実性を認識した相互監督損失、および新しい平滑性損失が導入されます。
我々のモデルは、KITTIデータセット上の以前の教師なし手法よりも、より良い不均一性マップを得る。
論文 参考訳(メタデータ) (2021-04-09T02:58:59Z) - OpenRooms: An End-to-End Open Framework for Photorealistic Indoor Scene
Datasets [103.54691385842314]
本研究では,屋内シーンの大規模フォトリアリスティックデータセットを作成するための新しいフレームワークを提案する。
私たちの目標は、データセット作成プロセスを広く利用できるようにすることです。
これにより、逆レンダリング、シーン理解、ロボット工学における重要な応用が可能になる。
論文 参考訳(メタデータ) (2020-07-25T06:48:47Z) - Neural Sparse Voxel Fields [151.20366604586403]
高速かつ高品質な自由視点レンダリングのためのニューラルシーン表現であるNeural Sparse Voxel Fields (NSVF)を紹介する。
NSVFは、各細胞の局所特性をモデル化するために、スパース・ボクセル・オクツリーで組織された、ボクセルに結合した暗黙のフィールドのセットを定義する。
提案手法は, 高い品質を達成しつつ, 推論時の最先端技術(NeRF(Mildenhall et al., 2020))よりも10倍以上高速である。
論文 参考訳(メタデータ) (2020-07-22T17:51:31Z) - A Novel Recurrent Encoder-Decoder Structure for Large-Scale Multi-view
Stereo Reconstruction from An Open Aerial Dataset [6.319667056655425]
我々は、WHUデータセットと呼ばれる合成空中データセットを提案し、これが最初の大規模多視点空中データセットである。
広帯域深度推定のための新しいネットワークRED-Netについても紹介する。
実験の結果,提案手法は現在のMVS法を50%以上の平均絶対誤差(MAE)で上回り,メモリと計算コストを削減できた。
論文 参考訳(メタデータ) (2020-03-02T03:04:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。