On the Synergies between Machine Learning and Binocular Stereo for Depth
Estimation from Images: a Survey
- URL: http://arxiv.org/abs/2004.08566v2
- Date: Wed, 31 Mar 2021 14:00:23 GMT
- Title: On the Synergies between Machine Learning and Binocular Stereo for Depth
Estimation from Images: a Survey
- Authors: Matteo Poggi, Fabio Tosi, Konstantinos Batsos, Philippos Mordohai,
Stefano Mattoccia
- Abstract summary: Stereo matching is one of the longest-standing problems in computer vision with close to 40 years of studies and research.
Recent research in the field of learning-based depth estimation from single and binocular images highlight the successes achieved so far.
- Score: 45.08733033427528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stereo matching is one of the longest-standing problems in computer vision
with close to 40 years of studies and research. Throughout the years the
paradigm has shifted from local, pixel-level decision to various forms of
discrete and continuous optimization to data-driven, learning-based methods.
Recently, the rise of machine learning and the rapid proliferation of deep
learning enhanced stereo matching with new exciting trends and applications
unthinkable until a few years ago. Interestingly, the relationship between
these two worlds is two-way. While machine, and especially deep, learning
advanced the state-of-the-art in stereo matching, stereo itself enabled new
ground-breaking methodologies such as self-supervised monocular depth
estimation based on deep networks. In this paper, we review recent research in
the field of learning-based depth estimation from single and binocular images
highlighting the synergies, the successes achieved so far and the open
challenges the community is going to face in the immediate future.
Related papers
- Event-based Stereo Depth Estimation: A Survey [12.711235562366898]
Stereopsis has widespread appeal in robotics as it is the predominant way by which living beings perceive depth to navigate our 3D world.
Event cameras are novel bio-inspired sensors that detect per-pixel brightness changes asynchronously, with very high temporal resolution and high dynamic range.
The high temporal precision also benefits stereo matching, making disparity (depth) estimation a popular research area for event cameras ever since its inception.
arXiv Detail & Related papers (2024-09-26T09:43:50Z) - SelfTune: Metrically Scaled Monocular Depth Estimation through
Self-Supervised Learning [53.78813049373321]
We propose a self-supervised learning method for the pre-trained supervised monocular depth networks to enable metrically scaled depth estimation.
Our approach is useful for various applications such as mobile robot navigation and is applicable to diverse environments.
arXiv Detail & Related papers (2022-03-10T12:28:42Z) - Deep Long-Tailed Learning: A Survey [163.16874896812885]
Deep long-tailed learning aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution.
Long-tailed class imbalance is a common problem in practical visual recognition tasks.
This paper provides a comprehensive survey on recent advances in deep long-tailed learning.
arXiv Detail & Related papers (2021-10-09T15:25:22Z) - Recent Advances in Monocular 2D and 3D Human Pose Estimation: A Deep
Learning Perspective [69.44384540002358]
We provide a comprehensive and holistic 2D-to-3D perspective to tackle this problem.
We categorize the mainstream and milestone approaches since the year 2014 under unified frameworks.
We also summarize the pose representation styles, benchmarks, evaluation metrics, and the quantitative performance of popular approaches.
arXiv Detail & Related papers (2021-04-23T11:07:07Z) - Unpaired Single-Image Depth Synthesis with cycle-consistent Wasserstein
GANs [1.0499611180329802]
Real-time estimation of actual environment depth is an essential module for various autonomous system tasks.
In this study, latest advancements in the field of generative neural networks are leveraged to fully unsupervised single-image depth synthesis.
arXiv Detail & Related papers (2021-03-31T09:43:38Z) - On the confidence of stereo matching in a deep-learning era: a
quantitative evaluation [124.09613797008099]
We review more than ten years of developments in the field of confidence estimation for stereo matching.
We study the different behaviors of each measure when applied to a pool of different stereo algorithms and, for the first time in literature, when paired with a state-of-the-art deep stereo network.
arXiv Detail & Related papers (2021-01-02T11:40:17Z) - Reversing the cycle: self-supervised deep stereo through enhanced
monocular distillation [51.714092199995044]
In many fields, self-supervised learning solutions are rapidly evolving and filling the gap with supervised approaches.
We propose a novel self-supervised paradigm reversing the link between the two.
In order to train deep stereo networks, we distill knowledge through a monocular completion network.
arXiv Detail & Related papers (2020-08-17T07:40:22Z) - A Survey on Deep Learning Techniques for Stereo-based Depth Estimation [30.330599857204344]
Estimating depth from RGB images is a long-standing ill-posed problem.
Deep learning for stereo-based depth estimation has attracted growing interest from the community.
This new generation of methods has demonstrated a significant leap in performance.
arXiv Detail & Related papers (2020-06-01T13:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.