On the confidence of stereo matching in a deep-learning era: a
quantitative evaluation
- URL: http://arxiv.org/abs/2101.00431v3
- Date: Tue, 30 Mar 2021 19:15:54 GMT
- Title: On the confidence of stereo matching in a deep-learning era: a
quantitative evaluation
- Authors: Matteo Poggi, Seungryong Kim, Fabio Tosi, Sunok Kim, Filippo Aleotti,
Dongbo Min, Kwanghoon Sohn, Stefano Mattoccia
- Abstract summary: We review more than ten years of developments in the field of confidence estimation for stereo matching.
We study the different behaviors of each measure when applied to a pool of different stereo algorithms and, for the first time in literature, when paired with a state-of-the-art deep stereo network.
- Score: 124.09613797008099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stereo matching is one of the most popular techniques to estimate dense depth
maps by finding the disparity between matching pixels on two, synchronized and
rectified images. Alongside with the development of more accurate algorithms,
the research community focused on finding good strategies to estimate the
reliability, i.e. the confidence, of estimated disparity maps. This information
proves to be a powerful cue to naively find wrong matches as well as to improve
the overall effectiveness of a variety of stereo algorithms according to
different strategies. In this paper, we review more than ten years of
developments in the field of confidence estimation for stereo matching. We
extensively discuss and evaluate existing confidence measures and their
variants, from hand-crafted ones to the most recent, state-of-the-art learning
based methods. We study the different behaviors of each measure when applied to
a pool of different stereo algorithms and, for the first time in literature,
when paired with a state-of-the-art deep stereo network. Our experiments,
carried out on five different standard datasets, provide a comprehensive
overview of the field, highlighting in particular both strengths and
limitations of learning-based strategies.
Related papers
- Modeling Stereo-Confidence Out of the End-to-End Stereo-Matching Network
via Disparity Plane Sweep [31.261772846687297]
The proposed stereo-confidence method is built upon the idea that any shift in a stereo-image pair should be updated in a corresponding amount shift in the disparity map.
By comparing the desirable and predicted disparity profiles, we can quantify the level of matching ambiguity between left and right images for confidence measurement.
arXiv Detail & Related papers (2024-01-22T14:52:08Z) - Multi-Dimensional Ability Diagnosis for Machine Learning Algorithms [88.93372675846123]
We propose a task-agnostic evaluation framework Camilla for evaluating machine learning algorithms.
We use cognitive diagnosis assumptions and neural networks to learn the complex interactions among algorithms, samples and the skills of each sample.
In our experiments, Camilla outperforms state-of-the-art baselines on the metric reliability, rank consistency and rank stability.
arXiv Detail & Related papers (2023-07-14T03:15:56Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
robustness of deep neural networks is usually lacking under adversarial examples, common corruptions, and distribution shifts.
We establish a comprehensive benchmark robustness called textbfARES-Bench on the image classification task.
By designing the training settings accordingly, we achieve the new state-of-the-art adversarial robustness.
arXiv Detail & Related papers (2023-02-28T04:26:20Z) - Towards Semi-Supervised Deep Facial Expression Recognition with An
Adaptive Confidence Margin [92.76372026435858]
We learn an Adaptive Confidence Margin (Ada-CM) to fully leverage all unlabeled data for semi-supervised deep facial expression recognition.
All unlabeled samples are partitioned into two subsets by comparing their confidence scores with the adaptively learned confidence margin.
Our method achieves state-of-the-art performance, especially surpassing fully-supervised baselines in a semi-supervised manner.
arXiv Detail & Related papers (2022-03-23T11:43:29Z) - Reversing the cycle: self-supervised deep stereo through enhanced
monocular distillation [51.714092199995044]
In many fields, self-supervised learning solutions are rapidly evolving and filling the gap with supervised approaches.
We propose a novel self-supervised paradigm reversing the link between the two.
In order to train deep stereo networks, we distill knowledge through a monocular completion network.
arXiv Detail & Related papers (2020-08-17T07:40:22Z) - Self-adapting confidence estimation for stereo [48.56220165347967]
We propose a flexible and lightweight solution enabling self-adapting confidence estimation to the stereo algorithm or network.
Our strategy allows us not only a seamless integration with any stereo system, but also, due to its self-adapting capability, for its out-of-the-box deployment in the field.
arXiv Detail & Related papers (2020-08-14T16:17:28Z) - On the Synergies between Machine Learning and Binocular Stereo for Depth
Estimation from Images: a Survey [45.08733033427528]
Stereo matching is one of the longest-standing problems in computer vision with close to 40 years of studies and research.
Recent research in the field of learning-based depth estimation from single and binocular images highlight the successes achieved so far.
arXiv Detail & Related papers (2020-04-18T09:14:08Z) - Uncertainty Estimation for End-To-End Learned Dense Stereo Matching via
Probabilistic Deep Learning [0.0]
A novel probabilistic neural network is presented for the task of joint depth and uncertainty estimation from epipolar rectified stereo image pairs.
The network learns a probability distribution from which parameters are sampled for every prediction.
The quality of the estimated depth and uncertainty information is assessed in an extensive evaluation on three different datasets.
arXiv Detail & Related papers (2020-02-10T11:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.