Dynamic Feature Integration for Simultaneous Detection of Salient
Object, Edge and Skeleton
- URL: http://arxiv.org/abs/2004.08595v1
- Date: Sat, 18 Apr 2020 11:10:11 GMT
- Title: Dynamic Feature Integration for Simultaneous Detection of Salient
Object, Edge and Skeleton
- Authors: Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng
- Abstract summary: In this paper, we solve three low-level pixel-wise vision problems, including salient object segmentation, edge detection, and skeleton extraction.
We first show some similarities shared by these tasks and then demonstrate how they can be leveraged for developing a unified framework.
- Score: 108.01007935498104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we solve three low-level pixel-wise vision problems, including
salient object segmentation, edge detection, and skeleton extraction, within a
unified framework. We first show some similarities shared by these tasks and
then demonstrate how they can be leveraged for developing a unified framework
that can be trained end-to-end. In particular, we introduce a selective
integration module that allows each task to dynamically choose features at
different levels from the shared backbone based on its own characteristics.
Furthermore, we design a task-adaptive attention module, aiming at
intelligently allocating information for different tasks according to the image
content priors. To evaluate the performance of our proposed network on these
tasks, we conduct exhaustive experiments on multiple representative datasets.
We will show that though these tasks are naturally quite different, our network
can work well on all of them and even perform better than current
single-purpose state-of-the-art methods. In addition, we also conduct adequate
ablation analyses that provide a full understanding of the design principles of
the proposed framework. To facilitate future research, source code will be
released.
Related papers
- Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - A Dynamic Feature Interaction Framework for Multi-task Visual Perception [100.98434079696268]
We devise an efficient unified framework to solve multiple common perception tasks.
These tasks include instance segmentation, semantic segmentation, monocular 3D detection, and depth estimation.
Our proposed framework, termed D2BNet, demonstrates a unique approach to parameter-efficient predictions for multi-task perception.
arXiv Detail & Related papers (2023-06-08T09:24:46Z) - AIMS: All-Inclusive Multi-Level Segmentation [93.5041381700744]
We propose a new task, All-Inclusive Multi-Level (AIMS), which segments visual regions into three levels: part, entity, and relation.
We also build a unified AIMS model through multi-dataset multi-task training to address the two major challenges of annotation inconsistency and task correlation.
arXiv Detail & Related papers (2023-05-28T16:28:49Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
We present a generic perception architecture named Uni-Perceiver.
It processes a variety of modalities and tasks with unified modeling and shared parameters.
Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks.
arXiv Detail & Related papers (2021-12-02T18:59:50Z) - Self-Supervised Visual Representation Learning Using Lightweight
Architectures [0.0]
In self-supervised learning, a model is trained to solve a pretext task, using a data set whose annotations are created by a machine.
We critically examine the most notable pretext tasks to extract features from image data.
We study the performance of various self-supervised techniques keeping all other parameters uniform.
arXiv Detail & Related papers (2021-10-21T14:13:10Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
We propose a unified distribution alignment strategy for long-tail visual recognition.
We then introduce a generalized re-weight method in the two-stage learning to balance the class prior.
Our approach achieves the state-of-the-art results across all four recognition tasks with a simple and unified framework.
arXiv Detail & Related papers (2021-03-30T14:09:53Z) - MOPT: Multi-Object Panoptic Tracking [33.77171216778909]
We introduce a novel perception task denoted as multi-object panoptic tracking (MOPT)
MOPT allows for exploiting pixel-level semantic information of 'thing' and'stuff' classes, temporal coherence, and pixel-level associations over time.
We present extensive quantitative and qualitative evaluations of both vision-based and LiDAR-based MOPT that demonstrate encouraging results.
arXiv Detail & Related papers (2020-04-17T11:45:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.