A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset
- URL: http://arxiv.org/abs/2407.16384v1
- Date: Tue, 23 Jul 2024 11:14:54 GMT
- Title: A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset
- Authors: Koushikey Chhapariya, Alexandre Benoit, Krishna Mohan Buddhiraju, Anil Kumar,
- Abstract summary: We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
- Score: 44.94304541427113
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multitask learning is a widely recognized technique in the field of computer vision and deep learning domain. However, it is still a research question in remote sensing, particularly for hyperspectral imaging. Moreover, most of the research in the remote sensing domain focuses on small and single-task-based annotated datasets, which limits the generalizability and scalability of the developed models to more diverse and complex real-world scenarios. Thus, in this study, we propose a multitask deep learning model designed to perform multiple classification and regression tasks simultaneously on hyperspectral images. We validated our approach on a large hyperspectral dataset called TAIGA, which contains 13 forest variables, including three categorical variables and ten continuous variables with different biophysical parameters. We design a sharing encoder and task-specific decoder network to streamline feature learning while allowing each task-specific decoder to focus on the unique aspects of its respective task. Additionally, a dense atrous pyramid pooling layer and attention network were integrated to extract multi-scale contextual information and enable selective information processing by prioritizing task-specific features. Further, we computed multitask loss and optimized its parameters for the proposed framework to improve the model performance and efficiency across diverse tasks. A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods. We trained our model across 10 seeds/trials to ensure robustness. Our proposed model demonstrates higher mean performance while maintaining lower or equivalent variability. To make the work reproducible, the codes will be available at https://github.com/Koushikey4596/Multitask-Deep-Learning-Model-for-Taiga-datatset.
Related papers
- Scalarization for Multi-Task and Multi-Domain Learning at Scale [15.545810422759295]
Training a single model on multiple input domains and/or output tasks allows for compressing information from multiple sources into a unified backbone.
However, optimizing such networks is a challenge due to discrepancies between the different tasks or domains.
arXiv Detail & Related papers (2023-10-13T07:31:04Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - Prototype-guided Cross-task Knowledge Distillation for Large-scale
Models [103.04711721343278]
Cross-task knowledge distillation helps to train a small student model to obtain a competitive performance.
We propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios.
arXiv Detail & Related papers (2022-12-26T15:00:42Z) - A System for Morphology-Task Generalization via Unified Representation
and Behavior Distillation [28.041319351752485]
In this work, we explore a method for learning a single policy that manipulates various forms of agents to solve various tasks by distilling a large amount of proficient behavioral data.
We introduce morphology-task graph, which treats observations, actions and goals/task in a unified graph representation.
We also develop MxT-Bench for fast large-scale behavior generation, which supports procedural generation of diverse morphology-task combinations.
arXiv Detail & Related papers (2022-11-25T18:52:48Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
Multitask learning assumes that models capable of learning from multiple tasks can achieve better quality and efficiency via knowledge transfer.
State of the art ML models rely on high customization for each task and leverage size and data scale rather than scaling the number of tasks.
We propose an evolutionary method that can generate a large scale multitask model and can support the dynamic and continuous addition of new tasks.
arXiv Detail & Related papers (2022-05-25T13:10:47Z) - Explaining the Effectiveness of Multi-Task Learning for Efficient
Knowledge Extraction from Spine MRI Reports [2.5953185061765884]
We show that a single multi-tasking model can match the performance of task specific models.
We validate our observations on our internal radiologist-annotated datasets on the cervical and lumbar spine.
arXiv Detail & Related papers (2022-05-06T01:51:19Z) - X-Learner: Learning Cross Sources and Tasks for Universal Visual
Representation [71.51719469058666]
We propose a representation learning framework called X-Learner.
X-Learner learns the universal feature of multiple vision tasks supervised by various sources.
X-Learner achieves strong performance on different tasks without extra annotations, modalities and computational costs.
arXiv Detail & Related papers (2022-03-16T17:23:26Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
We present a generic perception architecture named Uni-Perceiver.
It processes a variety of modalities and tasks with unified modeling and shared parameters.
Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks.
arXiv Detail & Related papers (2021-12-02T18:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.