論文の概要: Three Modern Roles for Logic in AI
- arxiv url: http://arxiv.org/abs/2004.08599v1
- Date: Sat, 18 Apr 2020 11:51:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 05:19:06.807612
- Title: Three Modern Roles for Logic in AI
- Title(参考訳): AIにおける論理学の現代的役割
- Authors: Adnan Darwiche
- Abstract要約: 人工知能における論理学の現代的役割を3つ検討する。
これには計算、データと知識の組み合わせから学ぶこと、機械学習システムの振る舞いを推論することなどが含まれる。
- 参考スコア(独自算出の注目度): 11.358487655918676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider three modern roles for logic in artificial intelligence, which
are based on the theory of tractable Boolean circuits: (1) logic as a basis for
computation, (2) logic for learning from a combination of data and knowledge,
and (3) logic for reasoning about the behavior of machine learning systems.
- Abstract(参考訳): 人工知能における論理の役割として,(1)計算の基礎としての論理,(2)データと知識の組み合わせから学習するための論理,(3)機械学習システムの振る舞いを推論するための論理,の3つを考察する。
関連論文リスト
- Empower Nested Boolean Logic via Self-Supervised Curriculum Learning [67.46052028752327]
大規模言語モデルを含む事前学習された言語モデルは、多言語論理に直面するランダムセレクタのように振る舞う。
この基本的能力で言語モデルを強化するために,本稿では,新たな自己教師付き学習手法であるtextitCurriculum Logical Reasoning (textscClr) を提案する。
論文 参考訳(メタデータ) (2023-10-09T06:54:02Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Discourse-Aware Graph Networks for Textual Logical Reasoning [142.0097357999134]
パッセージレベルの論理関係は命題単位間の係り合いまたは矛盾を表す(例、結論文)
論理的推論QAを解くための論理構造制約モデリングを提案し、談話対応グラフネットワーク(DAGN)を導入する。
ネットワークはまず、インラインの談話接続とジェネリック論理理論を利用した論理グラフを構築し、その後、エッジ推論機構を用いて論理関係を進化させ、グラフ機能を更新することで論理表現を学習する。
論文 参考訳(メタデータ) (2022-07-04T14:38:49Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
我々は最近提案された論理ニューラルネットワーク(LNN)を用いた学習規則を提案する。
他のものと比較して、LNNは古典的なブール論理と強く結びついている。
標準ベンチマークタスクの実験では、LNNルールが極めて解釈可能であることを確認した。
論文 参考訳(メタデータ) (2021-12-06T19:38:30Z) - On syntactically similar logic programs and sequential decompositions [0.0]
ルールベースの推論は、論理プログラムを通じて人工知能研究において顕著に形式化された人間の知能の重要な部分である。
複雑な物体を素体の合成として記述することは、コンピュータ科学や科学全般において一般的な戦略である。
一段階の削減によって、異なるドメインにわたるクエリに、どのように類似性を使って答えることができるかを示す。
論文 参考訳(メタデータ) (2021-09-11T15:22:17Z) - Inductive logic programming at 30 [22.482292439881192]
インダクティブ・ロジック・プログラミング(Inductive logic programming、ILP)は、論理ベースの機械学習の一種である。
我々は, (i) 新しいメタレベル探索法, (ii) 述語化のための新しいアプローチ, (iv) 異なる技術の利用に焦点を当てた。
ILPの現在の限界について論じ、今後の研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-02-21T08:37:17Z) - Logic Tensor Networks [9.004005678155023]
学習と推論をサポートする神経シンボリック形式論と計算モデルであるLogic Networks(LTN)を提示する。
LTNがいくつかのAIタスクの仕様と計算に一様言語を提供することを示す。
論文 参考訳(メタデータ) (2020-12-25T22:30:18Z) - Symbolic Logic meets Machine Learning: A Brief Survey in Infinite
Domains [12.47276164048813]
推論と帰納の緊張は、おそらく哲学、認知、人工知能といった分野において最も根本的な問題である。
本稿では,論理の限界に対する見解に挑戦する結果について報告し,無限領域での学習において論理が果たす役割を明らかにする。
論文 参考訳(メタデータ) (2020-06-15T15:29:49Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。