論文の概要: Motion Segmentation using Frequency Domain Transformer Networks
- arxiv url: http://arxiv.org/abs/2004.08638v1
- Date: Sat, 18 Apr 2020 15:05:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 05:36:16.640501
- Title: Motion Segmentation using Frequency Domain Transformer Networks
- Title(参考訳): 周波数領域トランスフォーマネットワークを用いた動きセグメンテーション
- Authors: Hafez Farazi and Sven Behnke
- Abstract要約: 本稿では,前景と背景を別々にモデル化することで,次のフレームを予測できる新しいエンドツーエンド学習アーキテクチャを提案する。
我々の手法は、ビデオラダーネットワークや予測ゲーテッドピラミドなど、広く使われているビデオ予測手法よりも優れた合成データが得られる。
- 参考スコア(独自算出の注目度): 29.998917158604694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised prediction is a powerful mechanism to learn representations
that capture the underlying structure of the data. Despite recent progress, the
self-supervised video prediction task is still challenging. One of the critical
factors that make the task hard is motion segmentation, which is segmenting
individual objects and the background and estimating their motion separately.
In video prediction, the shape, appearance, and transformation of each object
should be understood only by predicting the next frame in pixel space. To
address this task, we propose a novel end-to-end learnable architecture that
predicts the next frame by modeling foreground and background separately while
simultaneously estimating and predicting the foreground motion using Frequency
Domain Transformer Networks. Experimental evaluations show that this yields
interpretable representations and that our approach can outperform some widely
used video prediction methods like Video Ladder Network and Predictive Gated
Pyramids on synthetic data.
- Abstract(参考訳): 自己教師付き予測は、データの基盤構造を捉える表現を学ぶための強力なメカニズムである。
最近の進歩にもかかわらず、自己監督型ビデオ予測タスクはまだ難しい。
タスクを難しくする重要な要因の1つは、個々のオブジェクトとバックグラウンドをセグメンテーションし、それらの動きを別々に推定するモーションセグメンテーションである。
ビデオ予測では、各オブジェクトの形状、外観、変換は、ピクセル空間における次のフレームを予測することによってのみ理解されるべきである。
そこで本研究では,前景と背景を別々にモデル化し,周波数領域トランスフォーマネットワークを用いた前景動作の予測と予測を同時に行うことで,次のフレームを予測できる新しいエンドツーエンド学習可能なアーキテクチャを提案する。
ビデオラダーネットワークや予測ゲーテッドピラミドなどのビデオ予測手法を合成データ上で上回り,解釈可能な表現が得られることを示す実験結果を得た。
関連論文リスト
- Predicting Long-horizon Futures by Conditioning on Geometry and Time [49.86180975196375]
我々は,過去を前提とした将来のセンサ観測の課題を探求する。
マルチモーダリティを扱える画像拡散モデルの大規模事前学習を活用する。
我々は、屋内と屋外のシーンにまたがる多様なビデオのセットについて、ビデオ予測のためのベンチマークを作成する。
論文 参考訳(メタデータ) (2024-04-17T16:56:31Z) - A Control-Centric Benchmark for Video Prediction [69.22614362800692]
本稿では,アクション条件付きビデオ予測のベンチマークを,制御ベンチマークの形式で提案する。
私たちのベンチマークには、11のタスクカテゴリと310のタスクインスタンス定義を備えたシミュレーション環境が含まれています。
次に、ベンチマークを活用して、スケールするモデルサイズ、トレーニングデータの量、モデルアンサンブルの影響を調査します。
論文 参考訳(メタデータ) (2023-04-26T17:59:45Z) - Semi-Weakly Supervised Object Kinematic Motion Prediction [56.282759127180306]
3Dオブジェクトが与えられた場合、運動予測は移動部と対応する運動パラメータを識別することを目的としている。
階層的部分分割と移動部パラメータのマップを学習するグラフニューラルネットワークを提案する。
ネットワーク予測は、擬似ラベル付き移動情報を持つ大規模な3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2023-03-31T02:37:36Z) - STDepthFormer: Predicting Spatio-temporal Depth from Video with a
Self-supervised Transformer Model [0.0]
ビデオ入力と空間的時間的注意ネットワークから,映像のフレーム列を同時に予測する自己教師型モデルを提案する。
提案モデルでは,物体形状やテクスチャなどの事前のシーン知識を,単一画像深度推定法に類似した手法で活用する。
マルチオブジェクト検出、セグメンテーション、トラッキングを含む複雑なモデルを必要とするのではなく、暗黙的にシーン内のオブジェクトの動きを予測することができる。
論文 参考訳(メタデータ) (2023-03-02T12:22:51Z) - Object-Centric Video Prediction via Decoupling of Object Dynamics and
Interactions [27.112210225969733]
本稿では,映像系列の構造を抽出し,オブジェクトのダイナミックスやインタラクションを視覚的観察からモデル化する,オブジェクト中心のビデオ予測タスクのための新しいフレームワークを提案する。
そこで本研究では,時間的ダイナミクスとオブジェクトの相互作用の処理を分離した2つのオブジェクト中心ビデオ予測器(OCVP)トランスフォーマモジュールを提案する。
実験では、OCVP予測器を用いたオブジェクト中心の予測フレームワークが、2つの異なるデータセットにおけるオブジェクト非依存のビデオ予測モデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-23T08:29:26Z) - Wide and Narrow: Video Prediction from Context and Motion [54.21624227408727]
本稿では,これらの相補的属性を統合し,深層ネットワークを通した複雑なピクセルのダイナミックスを予測するフレームワークを提案する。
本研究では,非局所的な近隣表現を集約し,過去のフレーム上の文脈情報を保存するグローバルなコンテキスト伝搬ネットワークを提案する。
また,移動オブジェクトの動作をメモリに格納することで,適応的なフィルタカーネルを生成するローカルフィルタメモリネットワークを考案した。
論文 参考訳(メタデータ) (2021-10-22T04:35:58Z) - Semantic Prediction: Which One Should Come First, Recognition or
Prediction? [21.466783934830925]
下流の主なタスクの1つは、シーンのセマンティックな構成を解釈し、意思決定にそれを使用することである。
事前学習されたビデオ予測と事前学習された意味抽出モデルを考えると、同じ結果を得るための主な方法は2つある。
ビデオ予測モデルとしてLFDTN(Local Frequency Domain Transformer Network)と,合成データセットと実データセットのセマンティック抽出モデルとしてU-Netを用いて,これらの構成について検討する。
論文 参考訳(メタデータ) (2021-10-06T15:01:05Z) - Local Frequency Domain Transformer Networks for Video Prediction [24.126513851779936]
ビデオ予測は、現実世界の視覚的変化を予想するだけでなく、何よりも、教師なしの学習規則として登場した。
本稿では,解釈性を維持しつつ,これらのタスクを別々に実行することのできる,完全微分可能なビルディングブロックを提案する。
論文 参考訳(メタデータ) (2021-05-10T19:48:42Z) - Panoptic Segmentation Forecasting [71.75275164959953]
我々の目標は、最近の観測結果から近い将来の予測を行うことです。
この予測能力、すなわち予測能力は、自律的なエージェントの成功に不可欠なものだと考えています。
そこで我々は,2成分モデルを構築した。一方のコンポーネントは,オードメトリーを予測して背景物の力学を学習し,他方のコンポーネントは検出された物の力学を予測する。
論文 参考訳(メタデータ) (2021-04-08T17:59:16Z) - Self-Supervision by Prediction for Object Discovery in Videos [62.87145010885044]
本稿では,この予測タスクを自己監督として利用し,画像シーケンス表現のための新しいオブジェクト中心モデルを構築する。
私たちのフレームワークは、手動アノテーションや事前トレーニングされたネットワークを使わずにトレーニングできます。
最初の実験では、提案されたパイプラインがオブジェクト中心のビデオ予測への有望なステップであることを確認した。
論文 参考訳(メタデータ) (2021-03-09T19:14:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。