Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation
- URL: http://arxiv.org/abs/2004.08694v5
- Date: Mon, 28 Nov 2022 18:02:14 GMT
- Title: Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation
- Authors: Kaustubh D. Dhole and Christopher D. Manning
- Abstract summary: We develop SynQG, a set of transparent syntactic rules which transform declarative sentences into question-answer pairs.
We utilize PropBank argument descriptions and VerbNet state predicates to incorporate shallow semantic content.
In order to improve syntactic fluency and eliminate grammatically incorrect questions, we employ back-translation over the output of these syntactic rules.
- Score: 49.671882751569534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Question Generation (QG) is fundamentally a simple syntactic transformation;
however, many aspects of semantics influence what questions are good to form.
We implement this observation by developing SynQG, a set of transparent
syntactic rules leveraging universal dependencies, shallow semantic parsing,
lexical resources, and custom rules which transform declarative sentences into
question-answer pairs. We utilize PropBank argument descriptions and VerbNet
state predicates to incorporate shallow semantic content, which helps generate
questions of a descriptive nature and produce inferential and semantically
richer questions than existing systems. In order to improve syntactic fluency
and eliminate grammatically incorrect questions, we employ back-translation
over the output of these syntactic rules. A set of crowd-sourced evaluations
shows that our system can generate a larger number of highly grammatical and
relevant questions than previous QG systems and that back-translation
drastically improves grammaticality at a slight cost of generating irrelevant
questions.
Related papers
- Elaborative Simplification as Implicit Questions Under Discussion [51.17933943734872]
This paper proposes to view elaborative simplification through the lens of the Question Under Discussion (QUD) framework.
We show that explicitly modeling QUD provides essential understanding of elaborative simplification and how the elaborations connect with the rest of the discourse.
arXiv Detail & Related papers (2023-05-17T17:26:16Z) - HPE:Answering Complex Questions over Text by Hybrid Question Parsing and
Execution [92.69684305578957]
We propose a framework of question parsing and execution on textual QA.
The proposed framework can be viewed as a top-down question parsing followed by a bottom-up answer backtracking.
Our experiments on MuSiQue, 2WikiQA, HotpotQA, and NQ show that the proposed parsing and hybrid execution framework outperforms existing approaches in supervised, few-shot, and zero-shot settings.
arXiv Detail & Related papers (2023-05-12T22:37:06Z) - Keeping the Questions Conversational: Using Structured Representations
to Resolve Dependency in Conversational Question Answering [26.997542897342164]
We propose a novel framework, CONVSR (CONVQA using Structured Representations) for capturing and generating intermediate representations as conversational cues.
We test our model on the QuAC and CANARD datasets and illustrate by experimental results that our proposed framework achieves a better F1 score than the standard question rewriting model.
arXiv Detail & Related papers (2023-04-14T13:42:32Z) - Discourse Analysis via Questions and Answers: Parsing Dependency
Structures of Questions Under Discussion [57.43781399856913]
This work adopts the linguistic framework of Questions Under Discussion (QUD) for discourse analysis.
We characterize relationships between sentences as free-form questions, in contrast to exhaustive fine-grained questions.
We develop the first-of-its-kind QUD that derives a dependency structure of questions over full documents.
arXiv Detail & Related papers (2022-10-12T03:53:12Z) - Automatic question generation based on sentence structure analysis using
machine learning approach [0.0]
This article introduces our framework for generating factual questions from unstructured text in the English language.
It uses a combination of traditional linguistic approaches based on sentence patterns with several machine learning methods.
The framework also includes a question evaluation module which estimates the quality of generated questions.
arXiv Detail & Related papers (2022-05-25T14:35:29Z) - GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering [159.9645181522436]
GreaseLM is a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations.
We show that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
arXiv Detail & Related papers (2022-01-21T19:00:05Z) - Open-Retrieval Conversational Machine Reading [80.13988353794586]
In conversational machine reading, systems need to interpret natural language rules, answer high-level questions, and ask follow-up clarification questions.
Existing works assume the rule text is provided for each user question, which neglects the essential retrieval step in real scenarios.
In this work, we propose and investigate an open-retrieval setting of conversational machine reading.
arXiv Detail & Related papers (2021-02-17T08:55:01Z) - Knowledge-enriched, Type-constrained and Grammar-guided Question
Generation over Knowledge Bases [20.412744079015475]
Question generation over knowledge bases (KBQG) aims at generating natural-language questions about a subgraph, i.e. a set of (connected) triples.
Two main challenges still face the current crop of encoder-decoder-based methods, especially on small subgraphs.
We propose an innovative knowledge-enriched, type-constrained and grammar-guided KBQG model, named KTG.
arXiv Detail & Related papers (2020-10-07T04:49:48Z) - SPARQA: Skeleton-based Semantic Parsing for Complex Questions over
Knowledge Bases [27.343078784035693]
We propose a novel skeleton grammar to represent the high-level structure of a complex question.
This dedicated coarse-grained formalism with a BERT-based parsing algorithm helps to improve the accuracy of the downstream fine-grained semantic parsing.
Our approach shows promising performance on several datasets.
arXiv Detail & Related papers (2020-03-31T05:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.