Tensor completion using enhanced multiple modes low-rank prior and total
variation
- URL: http://arxiv.org/abs/2004.08747v3
- Date: Wed, 6 May 2020 00:57:57 GMT
- Title: Tensor completion using enhanced multiple modes low-rank prior and total
variation
- Authors: Haijin Zeng, Xiaozhen Xie, Jifeng Ning
- Abstract summary: We propose a novel model to recover a low-rank tensor by simultaneously performing double nuclear norm regularized low-rank matrix factorizations to the all-mode matricizations of the underlying tensor.
Subsequence convergence of our algorithm can be established, and our algorithm converges to the coordinate-wise minimizers in some mild conditions.
- Score: 1.3406858660972554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel model to recover a low-rank tensor by
simultaneously performing double nuclear norm regularized low-rank matrix
factorizations to the all-mode matricizations of the underlying tensor. An
block successive upper-bound minimization algorithm is applied to solve the
model. Subsequence convergence of our algorithm can be established, and our
algorithm converges to the coordinate-wise minimizers in some mild conditions.
Several experiments on three types of public data sets show that our algorithm
can recover a variety of low-rank tensors from significantly fewer samples than
the other testing tensor completion methods.
Related papers
- ADMM-MM Algorithm for General Tensor Decomposition [7.0326155922512275]
The proposed algorithm supports three basic loss functions ($ell$-loss, $ell$-loss and KL divergence) and various low-rank tensor decomposition models (CP, Tucker, TT, and TR decompositions)
We show that wide-range applications can be solved by the proposed algorithm, and can be easily extended to any established tensor decomposition models in a plug-and-play manner.
arXiv Detail & Related papers (2023-12-19T00:17:34Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Robust empirical risk minimization via Newton's method [9.797319790710711]
A new variant of Newton's method for empirical risk minimization is studied.
The gradient and Hessian of the objective function are replaced by robust estimators.
An algorithm for obtaining robust Newton directions based on the conjugate gradient method is also proposed.
arXiv Detail & Related papers (2023-01-30T18:54:54Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning [81.1071978288003]
In particular, we seek to understand the behaviour of the em generalization error of iterative SSL algorithms using information-theoretic principles.
Our theoretical results suggest that when the class conditional variances are not too large, the upper bound on the generalization error decreases monotonically with the number of iterations, but quickly saturates.
arXiv Detail & Related papers (2021-10-03T05:38:49Z) - New Riemannian preconditioned algorithms for tensor completion via
polyadic decomposition [10.620193291237262]
These algorithms exploit a non-Euclidean metric on the product space of the factor matrices of the low-rank tensor in the polyadic decomposition form.
We prove that the proposed gradient descent algorithm globally converges to a stationary point of the tensor completion problem.
Numerical results on synthetic and real-world data suggest that the proposed algorithms are more efficient in memory and time compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-01-26T22:11:06Z) - Learning Mixtures of Low-Rank Models [89.39877968115833]
We study the problem of learning computational mixtures of low-rank models.
We develop an algorithm that is guaranteed to recover the unknown matrices with near-optimal sample.
In addition, the proposed algorithm is provably stable against random noise.
arXiv Detail & Related papers (2020-09-23T17:53:48Z) - Enhanced nonconvex low-rank approximation of tensor multi-modes for
tensor completion [1.3406858660972554]
We propose a novel low-rank approximation tensor multi-modes (LRATM)
A block-bound method-based algorithm is designed to efficiently solve the proposed model.
Numerical results on three types of public multi-dimensional datasets have tested and shown that our algorithm can recover a variety of low-rank tensors.
arXiv Detail & Related papers (2020-05-28T08:53:54Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling.
We design a novel structured tensor low-rank norm tailored to MVSC.
We show that the proposed method outperforms state-of-the-art methods to a significant extent.
arXiv Detail & Related papers (2020-04-30T11:52:12Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z) - Tensor denoising and completion based on ordinal observations [11.193504036335503]
We consider the problem of low-rank tensor estimation from possibly incomplete, ordinal-valued observations.
We propose a multi-linear cumulative link model, develop a rank-constrained M-estimator, and obtain theoretical accuracy guarantees.
We show that the proposed estimator is minimax optimal under the class of low-rank models.
arXiv Detail & Related papers (2020-02-16T07:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.