Code Review in the Classroom
- URL: http://arxiv.org/abs/2004.08774v1
- Date: Sun, 19 Apr 2020 06:07:45 GMT
- Title: Code Review in the Classroom
- Authors: Victor Rivera, Hamna Aslam, Alexandr Naumchev, Daniel de Carvalho,
Mansur Khazeev and Manuel Mazzara
- Abstract summary: Young developers in a classroom setting provide a clear picture of the potential favourable and problematic areas of the code review process.
Their feedback suggests that the process has been well received with some points to better the process.
This paper can be used as guidelines to perform code reviews in the classroom.
- Score: 57.300604527924015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a case study to examine the affinity of the code review
process among young developers in an academic setting. Code review is
indispensable considering the positive outcomes it generates. However, it is
not an individual activity and requires substantial interaction among
stakeholders, deliverance, and acceptance of feedback, timely actions upon
feedback as well as the ability to agree on a solution in the wake of diverse
viewpoints. Young developers in a classroom setting provide a clear picture of
the potential favourable and problematic areas of the code review process.
Their feedback suggests that the process has been well received with some
points to better the process. This paper can be used as guidelines to perform
code reviews in the classroom.
Related papers
- AI-Assisted Assessment of Coding Practices in Modern Code Review [11.803776132972029]
AutoCommenter is an end-to-end system for learning and enforcing coding best practices.
This paper reports on the development, deployment, and evaluation of AutoCommenter.
arXiv Detail & Related papers (2024-05-22T11:57:18Z) - Exploring the Advances in Identifying Useful Code Review Comments [0.0]
This paper reflects the evolution of research on the usefulness of code review comments.
It examines papers that define the usefulness of code review comments, mine and annotate datasets, study developers' perceptions, analyze factors from different aspects, and use machine learning classifiers to automatically predict the usefulness of code review comments.
arXiv Detail & Related papers (2023-07-03T00:41:20Z) - A Dataset on Malicious Paper Bidding in Peer Review [84.68308372858755]
Malicious reviewers strategically bid in order to unethically manipulate the paper assignment.
A critical impediment towards creating and evaluating methods to mitigate this issue is the lack of publicly-available data on malicious paper bidding.
We release a novel dataset, collected from a mock conference activity where participants were instructed to bid either honestly or maliciously.
arXiv Detail & Related papers (2022-06-24T20:23:33Z) - Predicting Code Review Completion Time in Modern Code Review [12.696276129130332]
Modern Code Review (MCR) is being adopted in both open source and commercial projects as a common practice.
Code reviews can experience significant delays to be completed due to various socio-technical factors.
There is a lack of tool support to help developers estimating the time required to complete a code review.
arXiv Detail & Related papers (2021-09-30T14:00:56Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
We cast it as a paper ranking problem based on peer review texts and reviewer scores.
We introduce a novel, multi-faceted generic evaluation framework for making final decisions based on peer reviews.
arXiv Detail & Related papers (2021-09-02T19:41:47Z) - Polarity in the Classroom: A Case Study Leveraging Peer Sentiment Toward
Scalable Assessment [4.588028371034406]
Accurately grading open-ended assignments in large or massive open online courses (MOOCs) is non-trivial.
In this work, we detail the process by which we create our domain-dependent lexicon and aspect-informed review form.
We end by analyzing validity and discussing conclusions from our corpus of over 6800 peer reviews from nine courses.
arXiv Detail & Related papers (2021-08-02T15:45:11Z) - Deep Just-In-Time Inconsistency Detection Between Comments and Source
Code [51.00904399653609]
In this paper, we aim to detect whether a comment becomes inconsistent as a result of changes to the corresponding body of code.
We develop a deep-learning approach that learns to correlate a comment with code changes.
We show the usefulness of our approach by combining it with a comment update model to build a more comprehensive automatic comment maintenance system.
arXiv Detail & Related papers (2020-10-04T16:49:28Z) - Mitigating Manipulation in Peer Review via Randomized Reviewer
Assignments [96.114824979298]
Three important challenges in conference peer review are maliciously attempting to get assigned to certain papers and "torpedo reviewing"
We present a framework that brings all these challenges under a common umbrella and present a (randomized) algorithm for reviewer assignment.
Our algorithms can limit the chance that any malicious reviewer gets assigned to their desired paper to 50% while producing assignments with over 90% of the total optimal similarity.
arXiv Detail & Related papers (2020-06-29T23:55:53Z) - A Unified Dual-view Model for Review Summarization and Sentiment
Classification with Inconsistency Loss [51.448615489097236]
Acquiring accurate summarization and sentiment from user reviews is an essential component of modern e-commerce platforms.
We propose a novel dual-view model that jointly improves the performance of these two tasks.
Experiment results on four real-world datasets from different domains demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2020-06-02T13:34:11Z) - Leveraging Peer Feedback to Improve Visualization Education [4.679788938455095]
We discuss the construction and application of peer review in a computer science visualization course.
We evaluate student projects, peer review text, and a post-course questionnaire from 3 semesters of mixed undergraduate and graduate courses.
arXiv Detail & Related papers (2020-01-12T21:46:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.